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QUOTIENTS OF TANNAKIAN CATEGORIES

J.S. MILNE

ABSTRACT. We classify the “quotients” of a tannakian category in which the objects of a tan-
nakian subcategory become trivial, and we examine the properties of such quotient categories.

Introduction

Given a tannakian category T and a tannakian subcategory S, we ask whether there exists a
quotient of T by S, by which we mean an exact tensor functor q : T → Q from T to a tannakian
category Q such that

a. the objects of T that become trivial in Q (i.e., isomorphic to a direct sum of copies of 11
in Q) are precisely those in S, and

b. every object of Q is a subquotient of an object in the image of q.

When T is the category Rep(G) of finite-dimensional representations of an affine group scheme
G the answer is obvious: there exists a unique normal subgroup H of G such that the objects
of S are the representations on which H acts trivially, and there exists a canonical functor q
satisfying (a) and (b), namely, the restriction functor Rep(G) → Rep(H) corresponding to
the inclusion H ↪→ G. By contrast, in the general case, there need not exist a quotient, and
when there does there will usually not be a canonical one. In fact, we prove that there exists a q
satisfying (a) and (b) if and only if S is neutral, in which case the q are classified by the k-valued
fibre functors on S. Here k def

= End(11) is assumed to be a field.
From a slightly different perspective, one can ask the following question: given a subgroup

H of the fundamental group π(T) of T, does there exist an exact tensor functor q : T → Q such
that the resulting homomorphism π(Q) → q(π(T)) maps π(Q) isomorphically onto q(H)?
Again, there exists such a q if and only if the subcategory TH of T, whose objects are those on
which H acts trivially, is neutral, in which case the functors q correspond to the k-valued fibre
functors on TH .

The two questions are related by the “tannakian correspondence” between tannakian sub-
categories of T and subgroups of π(T) (see 1.7).

In addition to proving the above results, we determine the fibre functors, polarizations, and
fundamental groups of the quotient categories Q.
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The original motivation for these investigations came from the theory of motives (see Milne
2002, 2007).

Notation: The notation X ≈ Y means that X and Y are isomorphic, and X ' Y means that
X and Y are canonically isomorphic (or that there is a given or unique isomorphism).

1. Preliminaries

For tannakian categories, we use the terminology of Deligne and Milne 1982. In particular, we
write 11 for any identity object of a tannakian category — recall that it is uniquely determined
up to a unique isomorphism. We fix a field k and consider only tannakian categories with
k = End(11) and only functors of tannakian categories that are k-linear.

GERBES

1.1. We refer to Giraud 1971, Chapitre IV, for the theory of gerbes. All gerbes will be for the
flat (i.e., fpqc) topology on the category Affk of affine schemes over k. The band (= lien) of a
gerbe G is denoted Bd(G). A commutative band can be identified with a sheaf of groups.

1.2. Let α : G1 → G2 be a morphism of gerbes over Affk, and let ω0 be an object of G2,k. Define
(ω0 ↓G1) to be the fibred category over Affk whose fibre over S s−→ Spec k has as objects
the pairs (ω, a) consisting of an object ω of ob(G1,S) and an isomorphism a : s∗ω0 → α(ω) in
G2,S; the morphisms (ω, a) → (ν, b) are the isomorphisms ϕ : ω → ν in G1,S giving rise to a
commutative triangle. Thus,

ω

ν

ϕ

��

s∗(ω0)

α(ω)
a

66llllllll
s∗(ω0)

α(ν)
b ((RRRRRRRRR

α(ω)

α(ν)

α(ϕ)

��

α(ν)

G1,SG1,S G2,S

If the map of bands defined by α is an epimorphism, then (ω0↓G1) is a gerbe, and the sequence
of bands

1 → Bd(ω0↓G1) → Bd(G1) → Bd(G2) → 1 (1)

is exact (Giraud 1971, IV 2.5.5(i)).

1.3. Recall (Saavedra Rivano 1972, III 2.2.2) that a gerbe is said to be tannakian if its band is
locally defined by an affine group scheme. It is clear from the exact sequence (1) that if G1 and
G2 are tannakian, then so also is (ω0↓G1).
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1.4. The fibre functors on a tannakian category T form a gerbe FIB(T) over Affk (Deligne 1990,
1.13). Each object X of T defines a representation ω 7→ ω(X) of FIB(T), and in this way we
get an equivalence T → Rep(FIB(T)) of tannakian categories (Deligne 1989, 5.11; Saavedra
Rivano 1972, III 3.2.3, p200). Every gerbe whose band is tannakian arises in this way from a
tannakian category (Saavedra Rivano 1972, III 2.2.3).

FUNDAMENTAL GROUPS

1.5. We refer to Deligne 1989, §§5,6, for the theory of algebraic geometry in a tannakian cate-
gory T and, in particular, for the fundamental group π(T) of T. It is the affine group scheme1

in T such that ω(π(T)) ' Aut⊗(ω) functorially in the fibre functor ω on T. The group π(T)
acts on each object X of T, and ω transforms this action into the natural action of Aut⊗(ω)
on ω(X). The various realizations ω(π(T)) of π(T) determine the band of T (i.e., the band of
FIB(T)).

1.6. An exact tensor functor F : T1 → T2 of tannakian categories defines a homomorphism
π(F ) : π(T2) → F (π(T1)) (Deligne 1989, 6.4). Moreover:

a. F induces an equivalence of T1 with a category whose objects are the objects of T2

endowed with an action of F (π(T1)) compatible with that of π(T2) (Deligne 1989, 6.5);

b. π(F ) is flat and surjective if and only if F is fully faithful and every subobject of F (X),
for X in T1, is isomorphic to the image of a subobject of X (cf. Deligne and Milne 1982,
2.21);

c. π(F ) is a closed immersion if and only if every object of T2 is a subquotient of an object
in the image of q (ibid.).

1.7. For a subgroup2 H ⊂ π(T), we let TH denote the full subcategory of T whose objects
are those on which H acts trivially. It is a tannakian subcategory of T (i.e., it is a strictly
full subcategory closed under the formation of subquotients, direct sums, tensor products, and
duals) and it follows from Deligne 1990, 8.17, that every tannakian subcategory arises in this
way from a unique subgroup of π(T) (see Bertolin 2003, 1.6)3. The objects of Tπ(T) are exactly
the trivial objects of T, and there exists a unique (up to a unique isomorphism) fibre functor

γT : Tπ(T) → Veck,

namely, γT(X) = Hom(11, X).

1“T-schéma en groupes affines” in Deligne’s terminology.
2Note that every subgroup H of π(T) is normal. For example, the fundamental group π of the category Rep(G)

of representations of the affine group scheme G = Spec(A) is A regarded as an object of Ind(Rep(G)). The action
of G on A is that defined by inner automorphisms. A subgroup of π is a quotient A → B of A (as a bi-algebra)
such that the action of G on A defines an action of G on B. Such quotients correspond to normal subgroups of G.

3Théorème 8.17 of Deligne 1990 applies without restriction on the field k because we are assuming that T is
tannakian (see ibid. 6.9, 8.1). Equally, the blanket hypothesis that k is of characteristic zero in Bertolin 2003 is not
required for §1 of the paper.
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1.8. For a subgroup H of π(T) and an object X of T, we let XH denote the largest subobject
of X on which the action of H is trivial. Thus X = XH if and only if X is in TH .

1.9. When H is contained in the centre of π(T), then it is an affine group scheme in Tπ(T),
and so γT identifies it with an affine group scheme over k in the usual sense. For example, γT

identifies the centre of π(T) with Aut⊗(idT) (cf. Saavedra Rivano 1972, II 3.3.3.2, p150).

MORPHISMS OF TANNAKIAN CATEGORIES

1.10. For a group G, a right G-object X , and a left G-object Y , X ∧G Y denotes the con-
tracted product of X and Y , i.e., the quotient of X × Y by the diagonal action of G, (x, y)g =
(xg, g−1y). When G → H is a homomorphism of groups, X ∧G H is the H-object obtained
from X by extension of the structure group. In this last case, if X is a G-torsor, then X ∧G H
is also an H-torsor. See Giraud 1971, III 1.3, 1.4.

1.11. Let T be a tannakian category over k, and assume that the fundamental group π of T is
commutative. A torsor P under π in T defines a tensor equivalence T → T, X 7→ P ∧π X ,
bound by the identity map on Bd(T), and every such equivalence arises in this way from a
torsor under π (cf. Saavedra Rivano 1972, III 2.3). For any k-algebra R and R-valued fibre
functor ω on T, ω(P ) is an R-torsor under ω(π) and ω(P ∧π X) ' ω(P ) ∧ω(π) ω(X).

2. Quotients

For any exact tensor functor q : T → T′, the full subcategory Tq of T whose objects become
trivial in T′ is a tannakian subcategory of T (obviously).

We say that an exact tensor functor q : T → Q of tannakian categories is a quotient func-
tor if every object of Q is a subquotient of an object in the image of q; equivalently, if the
homomorphism π(q) : π(Q) → q(πT) is a closed immersion (see 1.6c). If, in addition, the
homomorphism π(q) is normal (i.e., its image is a normal subgroup of q(T)), then we say that
q is normal.

2.1. EXAMPLE. Consider the exact tensor functor ωf : Rep(G) → Rep(H) defined by a homo-
morphism f : H → G of affine group schemes. The objects of Rep(G)ωf are those on which
H (equivalently, the intersection of the normal subgroups of G containing f(H)) acts trivially.
The functor ωf is a quotient functor if and only if f is a closed immersion, in which case it is
normal if and only if f(H) is normal in G.

2.2. PROPOSITION. An exact tensor functor q : T → Q of tannakian categories is a normal
quotient functor if and only if there exists a subgroup H of π(T) such that π(q) induces an
isomorphism π(Q) → q(H).
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PROOF. ⇐=: Because q is exact, q(H) → q(πT) is a closed immersion. Therefore π(q) is a
closed immersion, and its image is the normal subgroup q(H) of q(πT).

=⇒: Because q is a quotient functor, π(q) is a closed immersion. Let H be the kernel
of the homomorphism π(T) → π(Tq) defined by the inclusion Tq ↪→ T. The image of π(q)
is contained in q(H), and equals it if and only if q is normal. To see this, let G = qπ(T),
and identify T with the category of objects of Q with an action of G compatible with that of
π(Q) ⊂ G. Then q becomes the forgetful functor, and Tq = Tπ(Q). Thus, q(H) is the subgroup
of G acting trivially on those objects on which π(Q) acts trivially. It follows that π(Q) ⊂ q(H),
with equality if and only if π(Q) is normal in G.

In the situation of the proposition, we sometimes call Q a quotient of T by H (cf. Milne
2002, 1.3).

Let q : T → Q be an exact tensor functor of tannakian categories. By definition, q maps Tq

into Qπ(Q), and so we acquire a k-valued fibre functor ωq def
= γQ ◦ (q|Tq) on Tq:

Tq
� _

��

q|Tq

//

ωq

**

Qπ(Q)
� _

��

γQ
// Veck

T
q

// Q.

ωq(X) = HomQ(11, qX).

In particular, Tq is neutral. A fibre functor ω on Q, defines a fibre functor ω ◦ q on T, and the
(unique) isomorphism γQ → ω|Qπ(Q) defines an isomorphism a(ω) : ωq → (ω ◦ q)|Tq.

2.3. PROPOSITION. Let q : T → Q be a normal quotient, and let H be the subgroup of π(T)
such that π(Q) ' q(H).

a. For X, Y in T, there is a canonical functorial isomorphism

HomQ(qX, qY ) ' ωq(Hom(X, Y )H).

b. The map ω 7→ (ω ◦ q, a(ω)) defines an equivalence of gerbes

r(q) : FIB(Q) → (ωq↓FIB(T)).

PROOF. (a) From the various definitions and Deligne and Milne 1982,

HomQ(qX, qY ) ' HomQ(11,Hom(qX, qY )π(Q)) (ibid. 1.6.4)

' HomQ(11, (qHom(X, Y ))q(H)) (ibid. 1.9)

' HomQ(11, q(Hom(X, Y )H))

' ωq(Hom(X, Y )H) (definition of ωq).

(b) The functor FIB(T) → FIB(TH) gives rise to an exact sequence

1 → Bd(ωQ↓FIB(T)) → Bd(T) → Bd(TH) → 0
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(see 1.2). On the other hand, we saw in the proof of (2.2) that H = Ker(π(T) → π(TH)).
On comparing these statements, we seee that the morphism r(q) of gerbes is bound by an
isomorphism of bands, which implies that it is an equivalence of gerbs (Giraud 1971, IV 2.2.6).

2.4. PROPOSITION. Let (Q, q) be a normal quotient of T. An exact tensor functor q′ : T → T′

factors through q if and only Tq′ ⊃ Tq and ωq ≈ ωq′|Tq.

PROOF. The conditions are obviously necessary. For the sufficiency, choose an isomorphism
b : ωq → ωq′|Tq. A fibre functor ω on T′ then defines a fibre functor ω ◦ q′ on T and an
isomorphism a(ω)|Tq ◦ b : ωq → (ω ◦ q′)|Tq. In this way we get a homomorphism

FIB(T′) → (ωq↓FIB(T)) ' FIB(Q)

and we can apply (1.4) to get a functor Q → T′ with the correct properties.

2.5. THEOREM. Let T be a tannakian category over k, and let ω0 be a k-valued fibre functor on
TH for some subgroup H ⊂ π(T). There exists a quotient (Q, q) of T by H such that ωq ' ω0.

PROOF. The gerbe (ω0↓FIB(T)) is tannakian (see 1.3). From the morphism of gerbes

(ω, a) 7→ ω : (ω0↓FIB(T)) → FIB(T),

we obtain a morphism of tannakian categories

Rep(FIB(T)) → Rep(ω0↓FIB(T))

(see 1.4). We define Q to be Rep(ω0↓FIB(T)) and we define q to be the composite of the above
morphism with the equivalence (see 1.4)

T → Rep(FIB(T)).

Since a gerbe and its tannakian category of representations have the same band, an argument as
in the proof of Proposition 2.3 shows that π(q) maps π(Q) isomorphically onto q(H). A direct
calculation shows that ωq is canonically isomorphic to ω0.

We sometimes write T/ω for the quotient of T defined by a k-valued fibre functor ω on a
subcategory of T.

2.6. EXAMPLE. Let (T, w,T) be a Tate triple, and let S be the full subcategory of T of objects
isomorphic to a direct sum of integer tensor powers of the Tate object T. Define ω0 to be the
fibre functor on S,

X 7→ lim−→
n

Hom(
⊕

−n≤r≤n

11(r), X).

Then the quotient tannakian category T/ω0 is that defined in Deligne and Milne 1982, 5.8.
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2.7. REMARK. Let q : T → Q be a normal quotient functor. Then T can be recovered from Q,
the homomorphism π(Q) → q(π(T)), and the actions of q(π(T)) on the objects of Q (apply
1.6a).

2.8. REMARK. A fixed k-valued fibre functor on a tannakian category T determines a Galois
correspondence between the subsets of ob(T) and the equivalence classes of quotient functors
T → Q.

2.9. EXERCISE. Use (1.10, 1.11) to express the correspondence between fibre functors on tan-
nakian subcategories of T and normal quotients of T in the language of 2-categories.

2.10. ASIDE. Let G be the fundamental group π(T) of a tannakian category T, and let H be a
subgroup of G. We use the same letter to denote an affine group scheme in T and the band it
defines. Then, under certain hypotheses, for example, if all the groups are commutative, there
will be an exact sequence

· · · → H1(k,G) → H1(k,G/H) → H2(k,H) → H2(k,G) → H2(k,G/H).

The category T defines a class c(T) in H2(k,G), namely, the G-equivalence class of the gerbe
of fibre functors on T, and the image of c(T) in H2(k,G/H) is the class of TH . Any quotient
of T by H defines a class in H2(k,H) mapping to c(T) in H2(k,G). Thus, the exact sequence
suggests that a quotient of T byH will exist if and only if the cohomology class of TH is neutral,
i.e., if and only if TH is neutral as a tannakian category, in which case the quotients are classified
by the elements of H1(k,G/H) (modulo H1(k,G)). When T is neutral and we fix a k-valued
fibre functor on it, then the elements of H1(k,G/H) classify the k-valued fibre functors on TH .
Thus, the cohomology theory suggests the above results, and in the next subsection we prove
that a little more of this heuristic picture is correct.

THE COHOMOLOGY CLASS OF THE QUOTIENT

For an affine group schemeG over a field k,Hr(k,G) denotes the cohomology group computed
with respect to the flat topology. When G is not commutative, this is defined only for r = 0, 1, 2
(Giraud 1971).

2.11. PROPOSITION. Let (Q, q) be a quotient of T by a subgroup H of the centre of π(T).
Suppose that T is neutral, with k-valued fibre functor ω. Let G = Aut⊗(ω), and let ℘(ωq) be
the G/ω(H)-torsor Hom(ω|TH , ωq). Under the connecting homomorphism

H1(k,G/H) → H2(k,H)

the class of ℘(ωq) in H1(k,G/H) maps to the class of Q in H2(k,H).

PROOF. Note that H = Bd(Q), and so the statement makes sense. According to Giraud 1971,
IV 4.2.2, the connecting homomorphism sends the class of ℘(ωq) to the class of the gerbe of
liftings of ℘(ωq), which can be identified with (ωq↓FIB(T)). Now Proposition 2.3 shows that
the H-equivalence class of (ωq ↓ FIB(T)) equals that of FIB(Q) which (by definition) is the
cohomology class of Q.
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SEMISIMPLE NORMAL QUOTIENTS

Everything can be made more explicit when the categories are semisimple. Throughout this
subsection, k has characteristic zero.

2.12. PROPOSITION. Every normal quotient of a semisimple tannakian category is semisimple.

PROOF. A tannakian category is semisimple if and only if the identity component of its funda-
mental group is pro-reductive (cf. Deligne and Milne 1982, 2.28), and a normal subgroup of a
reductive group is reductive (because its unipotent radical is a characteristic subgroup).

Let T be a semisimple tannakian category over k, and let ω0 be a k-valued fibre functor on a
tannakian subcategory S of T. We can construct an explicit quotient T/ω0 as follows. First, let
(T/ω0)

′ be the category with one object X̄ for each object X of T, and with

Hom(T/ω0)′(X̄, Ȳ ) = ω0(Hom(X̄, Ȳ )H)

where H is the subgroup of π(T) defining S. There is a unique structure of a k-linear tensor
category on (T/ω0)

′ for which q : T → (T/ω0)
′ is a tensor functor. With this structure, (T/ω0)

′

is rigid, and we define T/ω0 to be its pseudo-abelian hull. Thus, T/ω0 has

objects: pairs (X̄, e) with X ∈ ob(T) and e an idempotent in End(X̄),
morphisms: HomT/ω0((X̄, e), (Ȳ , f)) = f ◦ Hom(T/ω0)′(X̄, Ȳ ) ◦ e.

Then (T/ω0, q) is a quotient of T by H , and ωq ' ω0.
Let ω be a fibre functor on T, and let a be an isomorphism ω0 → ω|TH . The pair (ω, a)

defines a fibre functor ωa on T/ω0 whose action on objects is determined by

ωa(X̄) = ω(X)

and whose action on morphisms is determined by

Hom(X̄, Ȳ ) Hom(ωa(X̄), ωa(Ȳ ))
ωa //_______________Hom(X̄, Ȳ )

ω0(Hom(X, Y )H)

def

ω0(Hom(X, Y )H) ω(Hom(X, Y )H)a // ω(Hom(X, Y )H) Hom(ω(X), ω(Y ))ω(H).' // Hom(ω(X), ω(Y ))ω(H).

Hom(ωa(X̄), ωa(Ȳ ))

?�

OO

The map (ω, a) 7→ ωa defines an equivalence (ω0↓FIB(T)) → FIB(T/ω0).
Let H1 ⊂ H0 ⊂ π(T), and let ω0 and ω1 be k-valued fibre functors on TH0 and TH1

respectively. A morphism α : ω0 → ω1|TH0 defines an exact tensor functor T/ω0 → T/ω1

whose action on objects is determined by

X̄ (in TH0) 7→ X̄ (in TH1),
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and whose action on morphisms is determined by

HomT/ω0(X̄, Ȳ ) HomT/ω1(X̄, Ȳ )//_______________HomT/ω0(X̄, Ȳ )

ω0(HomT(X, Y )H0)

def

ω0(HomT(X, Y )H0) ω1(HomT(X,Y )H0)α // ω1(HomT(X,Y )H0) ω1(HomT(X,Y )H1)).� � // ω1(HomT(X,Y )H1)).

HomT/ω1(X̄, Ȳ )

def

When H1 = H0, this is an isomorphism (!) of tensor categories T/ω0 → T/ω1.
Let (Q1, q1) and (Q2, q2) be quotients of T by H . For simplicity, assume that π def

= π(T) is
commutative. Then Hom(ωq1 , ωq2) is π/H-torsor, and we assume that it lifts to a π-torsor P in
T, so P ∧π (π/H) = Hom(ωq1 , ωq2). Then

T
X 7→P∧πX−−−−−−→ T

q2−→ Q2

realizes Q2 as a quotient of T byH , and the corresponding fibre functor on TH is P∧πωq2 ' ωq1 .
Therefore, there exists a commutative diagram of exact tensor functors

T
X 7→P∧πX−−−−−−→ Tyq1

yq2

Q1 −−−−−−→ Q2,

which depends on the choice of P lifting Hom(ωq1 , ωq2) in an obvious way.

3. Polarizations

We refer to Deligne and Milne 1982, 5.12, for the notion of a (graded) polarization on a Tate
triple over R. We write V for the category of Z-graded complex vector spaces endowed with a
semilinear automorphism a such that a2v = (−1)nv if v ∈ V n. It has a natural structure of a
Tate triple (ibid. 5.3). The canonical polarization on V is denoted ΠV.

A morphism F : (T1, w1,T1) → (T2, w2,T2) of Tate triples is an exact tensor functor
F : T1 → T2 preserving the gradations together with an isomorphism F (T1) ' T2. We say
that such a morphism is compatible with graded polarizations Π1 and Π2 on T1 and T2 (denoted
F : Π1 7→ Π2) if

ψ ∈ Π1(X) ⇒ Fψ ∈ Π2(FX),

in which case, for any X homogeneous of weight n, Π1(X) consists of the sesquilinear forms
ψ : X ⊗ X̄ → 11(−n) such that Fψ ∈ Π2(FX). In particular, given F and Π2, there exists at
most one graded polarization Π1 on T1 such that F : Π1 7→ Π2.

Let T = (T, w,T) be an algebraic Tate triple over R such that w(−1) 6= 1. Given a graded
polarization Π on T, there exists a morphism of Tate triples ξΠ : T → V (well defined up to
isomorphism) such that ξΠ : Π 7→ ΠV (Deligne and Milne 1982, 5.20). Let ωΠ be the composite

Tw(Gm) ξΠ→ Vw(Gm) γV

→ VecR;
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it is a fibre functor on Tw(Gm).

A CRITERION FOR THE EXISTENCE OF A POLARIZATION

3.1. PROPOSITION. Let T = (T, w,T) be an algebraic Tate triple over R such that w(−1) 6= 1,
and let ξ : T → V be a morphism of Tate triples. There exists a graded polarization Π on T
(necessarily unique) such that ξ : Π 7→ ΠV if and only if the real algebraic group Aut⊗(γV ◦
ξ|Tw(Gm)) is anisotropic.

PROOF. Let G = Aut⊗(γV ◦ ξ|Tw(Gm)). Assume Π exists. The restriction of Π to Tw(Gm) is
a symmetric polarization, which the fibre functor γV ◦ ξ maps to the canonical polarization on
VecR. This implies that G is anisotropic (Deligne 1972, 2.6).

For the converse, let X be an object of weight n in T(C). A sesquilinear form ψ : ξ(X) ⊗
ξ(X) → 11(−n) arises from a sesquilinear form on X if and only if it is fixed by G. Because
G is anisotropic, there exists a ψ ∈ ΠV(ξ(X)) fixed by G (ibid., 2.6), and we define Π(X) to
consist of all sesquilinear forms φ on X such that ξ(φ) ∈ ΠV(ξ(X)). It is now straightforward
to check that X 7→ Π(X) is a polarization on T.

3.2. COROLLARY. Let F : (T1, w1,T1) → (T2, w2,T2) be a morphism of Tate triples, and let
Π2 be a graded polarization on T2. There exists a graded polarization Π1 on T1 such that
F : Π1 7→ Π2 if and only if the real algebraic group Aut⊗(γV ◦ ξΠ2 ◦ F |T

w(Gm)
1 ) is anisotropic.

POLARIZATIONS ON QUOTIENTS

The next proposition gives a criterion for a polarization on a Tate triple to pass to a quotient
Tate triple.

3.3. PROPOSITION. Let T = (T, w,T) be an algebraic Tate triple over R such that w(−1) 6= 1.
Let (Q,q) be a quotient of T by H ⊂ π(T), and let ωq be the corresponding fibre functor on
TH . Assume H ⊃ w(Gm), so that Q inherits a Tate triple structure from that on T, and that Q
is semisimple. Given a graded polarization Π on T, there exists a graded polarization Π′ on Q
such that q : Π 7→ Π′ if and only if ωq ≈ ωΠ|TH .

PROOF. ⇒: Let Π′ be such a polarization on Q, and consider the functors

T
q→ Q

ξΠ′→ V, ξΠ′ : Π′ 7→ ΠV.

Both ξΠ′ ◦ q and ξΠ are compatible with Π and ΠV and with the Tate triple structures on T and
V, and so ξΠ′ ◦ q ≈ ξΠ (Deligne and Milne 1982, 5.20). On restricting everything to Tw(Gm) and
composing with γV , we get an isomorphism ωΠ′ ◦ (q|Tw(Gm)) ≈ ωΠ. Now restrict this to TH ,
and note that (

ωΠ′ ◦ (q|Tw(Gm))
)
|TH = (ωΠ′|Qπ(Q)) ◦ (q|TH) ' ωq

because ωΠ′|Qπ(Q) ' γQ.
⇐: The choice of an isomorphism ωq → ωΠ|TH determines an exact tensor functor

T/ωq → T/ωΠ.
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As the quotients T/ωq and T/ωΠ are tensor equivalent respectively to Q and V, this shows that
there is an exact tensor functor ξ : Q → V such that ξ ◦ q ≈ ξΠ. Evidently Aut⊗(γV ◦ ξ|Qw(Gm))
is isomorphic to a subgroup of Aut⊗(γV ◦ ξΠ|Tw(Gm)). Since the latter is anisotropic, so also
is the former (Deligne 1972, 2.5). Hence ξ defines a graded polarization Π′ on Q (Proposition
3.1), and clearly q : Π 7→ Π′.
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