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COHERENT UNIT ACTIONS ON REGULAR OPERADS AND HOPF
ALGEBRAS

KURUSCH EBRAHIMI-FARD AND LI GUO

Abstract. J.-L. Loday introduced the concept of coherent unit actions on a regular
operad and showed that such actions give Hopf algebra structures on the free algebras.
Hopf algebras obtained this way include the Hopf algebras of shuffles, quasi-shuffles and
planar rooted trees. We characterize coherent unit actions on binary quadratic regular
operads in terms of linear equations of the generators of the operads. We then use these
equations to classify operads with coherent unit actions. We further show that coherent
unit actions are preserved under taking products and thus yield Hopf algebras on the
free object of the product operads when the factor operads have coherent unit actions.
On the other hand, coherent unit actions are never preserved under taking the dual in
the operadic sense except for the operad of associative algebras.

1. Introduction

While the original motivation for the study of the dendriform dialgebra (also called the
dendriform algebra) [20, 21] was to study the periodicity of algebraic K-groups, it soon
became clear that dendriform dialgebras are an interesting subject on its own. This can
be seen on one hand by its quite extensive study by several authors in areas related
to operads [25], homology [10, 11], combinatorics [2, 3, 9, 28], arithmetic [24], quantum
field theory [9] and especially Hopf algebras [2, 5, 15, 30, 36]. On the other hand it has
several generalizations and extensions that share properties of the original dendriform
dialgebra. These new structures include the dendriform trialgebra (also called the triden-
driform algebra) [29], the dipterous algebra [30], the quadri-algebra [4], the 2-associative
algebra [30, 31, 34], the magmatic algebra [12] and the ennea-algebra. In fact, they are
special cases of a class of binary quadratic regular operads that will be made precise later
in Section 2.1.

It is remarkable that many of these algebra structures have a Hopf algebra structure
on the free algebras. For example, the free commutative dendriform dialgebras and trial-
gebras are the shuffle and quasi-shuffle Hopf algebras, and the free dendriform dialgebra
and trialgebras are the Hopf algebra of binary planar rooted trees [23, 28] and planar
rooted trees [29]. These findings were put in a general framework recently by Loday [25]
who showed that the existence of a coherent unit action on a binary quadratic regular
operad with a splitting of associativity endows the free objects with a Hopf algebra struc-
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ture (Theorem 2.4). Since then, this method has been applied to obtain Hopf algebra
structures on several other operads [17, 18, 19, 25].

Thus it is desirable to obtain a good understanding of such operads with a coherent
unit action and therefore with a Hopf algebra structure on the free objects. This is our
goal to achieve in this paper, by working with the generators and relations of these regular
operads [7, 26]. As a result, we explicitly describe a large class of operads that give rise
to Hopf algebras.

After briefly recalling related concepts and results, we first give in Section 2 a simple
criterion for a unit action to be coherent. This criterion reduces the checking of the
coherence condition to the verification of a system of linear equations, called coherence
equations. Then in Section 3 we use the coherence equations to obtain a classification of
binary, quadratic, regular operads that allows a coherent unit action. Special cases are
studied and are related to examples in the current literature.

The compatibility of coherent unit actions on operads with taking operad products and
duals is studied in Section 4. We show that the coherence condition is preserved by taking
products. Thus the Hopf algebra structure on the product operad follows automatically
from those on the factor operads, as long as the factor operads have coherent unit actions.
In contrast to products, we show that the coherence condition is never preserved by taking
the dual in the operadic sense, except for the trivial case when the operad is the one for
associative algebras.

We give a similar study of the related notion of compatible unit actions [25]. It is
related to, but weaker than the notion of coherent unit actions.

Acknowledgements: The first named author would like to thank the Ev. Studienwerk
Villigst and the theory department of the Physikalisches Institut, at Bonn University for
generous support. The second named author is supported in part by NSF grant DMS
0505643 and a grant from the Research Council of the Rutgers University.

2. Compatible and coherent unit actions

2.1. ABQR operads. We will consider binary quadratic regular operads. We recall
their standard definition of algebraic operads before rephrasing them in the more explicit
form in terms of generators and relations. Since we will not need the general definition in
the rest of the paper, we refer the interested reader to find further details in the standard
references, such as [13, 22, 32, 33].

Let k be a field of characteristic zero and let Vect be the category of k-vector spaces.
An algebraic operad over k is an analytic functor P : Vect → Vect such that P(0) = 0,
and is equipped with a natural transformation of functors γ : P◦P → P which is associative
and has a unit 1 : id → P.

By considering free P-algebras, an operad gives a sequence {P(n)} of finitely generated
k[Sn]-modules that satisfy certain composition axioms. An operad is called binary if
P(1) = k and P(2) generates P(n), n ≥ 3 by composition; is called quadratic if all
relations among the binary operations P(2) are derived from relations in P(3); is called
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regular if, moreover, the binary operations have no symmetries and the variables x, y
and z appear in the same order in the relations (such as (x · y) · z = x · (y · z), not
(x · y) · z = x · (z · y)).

By regularity, the space P(n) is of the form Pn⊗ k[Sn] where Pn is a vector space. So
the operad {P(n)} is determined by {Pn}. Then a binary, quadratic, regular operad is
determined by a pair (Ω, Λ) where Ω = P2, called the space of generators, and Λ is a
subspace of Ω⊗2 ⊕ Ω⊗2, called the space of relations. So we write P = (Ω, Λ) for the
operad. Since (Ω, Λ) is determined by (ω, λ) where ω is a basis of Ω and λ is a basis of
Λ, we also use (ω, λ) to denote a binary, quadratic, regular operad, as is usually the case
in the literature.

For such a P = (Ω, Λ), a k-vector space A is called a P-algebra if it has binary
operations Ω and if, for

( k∑
i=1

�(1)
i ⊗�(2)

i ,

m∑
j=1

�(3)
j ⊗�(4)

j

)
∈ Λ ⊆ Ω⊗2 ⊕ Ω⊗2

with �(1)
i ,�(2)

i ,�(3)
j ,�(4)

j ∈ Ω, 1 ≤ i ≤ k, 1 ≤ j ≤ m, we have

k∑
i=1

(x�(1)
i y)�(2)

i z =
m∑

j=1

x�(3)
j (y �(4)

j z),∀ x, y, z ∈ A. (1)

We say that a binary, quadratic, regular operad (Ω, Λ) has a splitting associativity
if there is a choice of ? in Ω such that (? ⊗ ?, ? ⊗ ?) is in Λ [25]. As an abbreviation,
we call such an operad an associative BQR operad, or simply an ABQR operad.
Equivalently [7, Lemma 2.1], a binary, quadratic, regular operad is ABQR if and only if
there is a basis ω = {ωi} of Ω such that ? =

∑
i ωi and there is a basis λ = {λj}j of Λ such

that the associativity of ? is given by the sum of λj, giving a splitting of the associativity
of ? : (? ⊗ ?, ? ⊗ ?) =

∑
j λj. Note that a binary quadratic regular operad (Ω, Λ) might

have different choices of associative operations. For example, if ? is associative, then so is
c? for any nonzero c ∈ k. As we will see later, some operads even have linear independent
associative operations.

To be precise, we let (Ω, Λ, ?), or (ω, λ, ?), denote an ABQR operad with ? as the chosen
associative operation. Let (Ω, Λ, ?) and (Ω′, Λ′, ?′) be ABQR operads with associative
operations ? and ?′ respectively. A morphism f : (Ω, Λ, ?) → (Ω′, Λ′, ?) is a linear map
from Ω to Ω′ sending ? to ?′ and inducing a linear map from Λ to Λ′. An invertible
morphism is called an isomorphism.

The following examples of ABQR operads will be used later in the paper.

2.2. Example.

1. An associative k-algebra is a k-vector space A with an associative product · . The
corresponding operad is PA = (ωA, λA, ·) with ωA = {·} and λA = {(· ⊗ ·, · ⊗ ·)}.
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2. The dendriform dialgebra of Loday [23] corresponds to the operad PD = (ωD, λD, ?D)
with ωD = {≺,�}, ?D =≺ + � and

λD = {(≺ ⊗ ≺,≺ ⊗(≺ + �)), (� ⊗ ≺,� ⊗ ≺), ((≺ + �)⊗ �,� ⊗ �)}. (2)

3. The dendriform trialgebra of Loday and Ronco [29] corresponds to the operad
PT = (ωT , λT , ?T ) with ωT = {≺,�, ◦}, ?T =≺ + � + ◦ and

λT = {(≺ ⊗ ≺,≺ ⊗ ?), (� ⊗ ≺,� ⊗ ≺), (?⊗ �,� ⊗ �), (� ⊗ ◦,� ⊗ ◦),
(≺ ⊗ ◦, ◦ ⊗ �), (◦ ⊗ ≺, ◦ ⊗ ≺), (◦ ⊗ ◦, ◦ ⊗ ◦)}. (3)

4. Leroux’s NS-algebra [18] corresponds to the operad PN = (ωN , λN , ?N) with ωN =
{≺,�, •}, ?N =≺ + � + • and

λN = {(≺ ⊗ ≺,≺ ⊗ ?), (� ⊗ ≺,� ⊗ ≺), (?⊗ �,� ⊗ �),

(? ⊗ •+ • ⊗ ≺,� ⊗ •+ • ⊗ ?)}. (4)

2.3. Compatible and coherent unit actions. We now review the concepts of coher-
ent and compatible actions on regular operads, and the theorem of Loday showing that
the existence of coherent unit actions yields Hopf algebras.

Let P = (Ω, Λ, ?) be an ABQR operad. A unit action on P is a choice of two linear
maps

α, β : Ω −→ k

such that α(?) = β(?) = 1, the unit of k.
Let A be a P-algebra. A unit action (α, β) allows us to extend a binary operation

� ∈ Ω on A to a restricted binary operation on A+ := k.1⊕ A by defining

�̃ : A+ ⊗ A+ → A+, a�̃b :=


a� b, a, b ∈ A,
α(�) a, a ∈ A, b = 1,
β(�) b, a = 1, b ∈ A,
1, a = b = 1,� = ?,
undefined, a = b = 1,� 6= ?.

(5)

Thus the extended binary operation �̃ is defined on the subspace (k.1⊗A)⊕ (A⊗k.1)⊕
(A⊗A) of A+⊗A+, and on the full space A+⊗A+ when � = ?. The unit action is called
compatible if the relations of P are still valid on A+ for each P-algebra A whenever the

terms are defined. More precisely, if (
∑

i�
(1)
i ⊗ �(2)

i ,
∑

j �
(3)
j ⊗ �(4)

j ) is a relation of P,
then ∑

i

(x�̃(1)
i y)�̃(2)

i z =
∑

j

x�̃(3)
j (y�̃(4)

j z), ∀x, y, z ∈ A+,

whenever the two sides make sense.



352 KURUSCH EBRAHIMI-FARD AND LI GUO

Next let A, B be two P-algebras where P has a compatible unit action (α, β). Consider
the subspace A � B := (A ⊗ k.1) ⊕ (k.1 ⊗ B) ⊕ (A ⊗ B). For � ∈ Ω, define a binary
operation

� : (A � B)⊗ (A � B) → A � B,

(a⊗ b) � (a′ ⊗ b′) :=

{
(a?̃a′)⊗ (b�̃b′), if b⊗ b′ 6= 1⊗ 1,
(a�̃a′)⊗ 1, otherwise.

(6)

See [35] for the case of dendriform dialgebras. We say that the unit action (α, β) is
coherent if, for any P-algebras A and B, the subspace A � B, equipped with these
operations is still a P-algebra. We note that A+⊗B+ = k.1⊕ (A�B) = (A�B)+. Thus
the associative operation ? gives an associative operation ? on A � B which, as in (5),
extends to an associative operation ?̃ on A+ ⊗B+.

By definition, a coherent unit action on P is also compatible. The converse is not true.
See Example 2.8.

The significance of the coherence property can be seen in the following theorem of
Loday [25]. We refer the reader to the original paper for further details.

2.4. Theorem. Let P be an ABQR operad. Let P(V )+ be the augmented free P-algebra
on a k-vector space V . Any coherent unit action on P equips P(V )+ with a connected
Hopf algebra structure.

The Hopf algebra structure is in fact a P-Hopf algebra structure in the sense that the
coproduct is a morphism of augmented P-algebras.

For example, it was shown in [25] that, for the dendriform trialgebra PT = (ωT , λT , ?T )
with ωT = {≺,�, ◦}, the unit action

α(≺) = β(�) = 1, α(�) = α(◦) = β(≺) = β(◦) = 0

is coherent with the relations of PT , and thus the free PT -algebra on a k-vector space has
a Hopf algebra structure. This is the Hopf algebra of planar rooted trees [28]. The same
method also recovers the Hopf algebra structure on the free dendriform dialgebra as planar
binary rooted trees [23], and applies to obtain Hopf algebra structures on several other al-
gebras [17, 18, 19, 25] (see Corollary 4.5). Furthermore, a variation of Theorem 2.4 applies
to Zinbiel algebras to recover the shuffle Hopf algebra [25] and applies to commutative
trialgebras to recover the quasi-shuffle Hopf algebra of Hoffman [14]. See [27].

The understandings gained in this paper on coherent unit actions on ABQR operads,
especially the classification (Theorem 3.2), give us the precise information on the kind of
operads that we should expect a Hopf algebra structure on the free objects.

Coherent unit actions are also defined by Loday [25] for binary, quadratic operads
without the regularity condition and are recently extended to general algebraic operads
by Holtkamp [16]. In these cases, the free objects of the operad P have the structure of
a P-Hopf algebra, a more general concept than Hopf algebra. It would be interesting to
extend results in this paper to the general case.
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2.5. Coherence equations. We provide an equivalent condition of the compatibility
and coherence of unit actions in terms of linear relations among the binary operations in
an operad. This criterion will be applied in Theorem 3.2 to classify ABQR operads with
coherent or compatible unit actions.

2.6. Theorem. Let P = (Ω, Λ, ?) be an ABQR operad.

1. A unit action (α, β) on P is coherent if and only if, for every

(
∑

i

�(1)
i ⊗�(2)

i ,
∑

j

�(3)
j ⊗�(4)

j ) ∈ Λ,

the following coherence equations hold.

(C1)
∑

i β(�(1)
i )�(2)

i =
∑

j β(�(3)
j )�(4)

j ,

(C2)
∑

i α(�(1)
i )�(2)

i =
∑

j β(�(4)
j )�(3)

j ,

(C3)
∑

i α(�(2)
i )�(1)

i =
∑

j α(�(4)
j )�(3)

j ,

(C4)
∑

i β(�(2)
i )�(1)

i =
∑

j β(�(3)
j )β(�(4)

j )?,

(C5)
∑

i α(�(1)
i )α(�(2)

i )? =
∑

j α(�(3)
j )�(4)

j .

2. A unit action (α, β) on P is compatible if and only if, for every

(
∑

i

�(1)
i ⊗�(2)

i ,
∑

j

�(3)
j ⊗�(4)

j ) ∈ Λ,

equations (C1), (C2) and (C3) above hold.

Before proving Theorem 2.6, we give examples to show how it can be used to determine
compatible and coherent unit actions.

2.7. Example. Consider the dendriform dialgebra PD = (ωD, λD) in Eq.(2). So ωD =
{≺,�} and

λD = {(≺ ⊗ ≺,≺ ⊗(≺ + �)), (� ⊗ ≺,� ⊗ ≺), ((≺ + �)⊗ �,� ⊗ �)}.

Suppose (α, β) is a coherent unit action of PD. Then the three equations in λD satisfy (C1)
– (C5). Applying (C1) to the first relation in λD, we obtain β(≺) ≺= β(≺)(≺ + �). So
β(≺) �= 0. Therefore β(≺) = 0. Applying (C2) to the first relation, we have α(≺) ≺=≺
since β(≺ + �) = β(?) = 1. Thus α(≺) = 1. Similarly, applying (C2) to the second
equation, we have α(�) ≺= β(≺) �. So α(�) = 0. Applying (C1) to the third equation
gives β(≺ + �) �=�= β(�) �. Thus β(�) = 1. Therefore, the only coherent unit
action on PD is the one given in [23]:

α(≺) = β(�) = 1, α(�) = β(≺)) = 0.

Note that we have only used (C1) – (C3). So the above is also the only compatible unit
action of PD.

We will comment on the trialgebra case in Corollary 3.6.
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2.8. Example. We consider the 2-associative algebra in [30] and [34]. It is given by
generators ω = {∗, ·} and relations λ = {(∗ ⊗ ∗, ∗ ⊗ ∗), (· ⊗ ·, · ⊗ ·)}. Consider the unit
action (α, β) in [25] given by α(∗) = α(·) = β(∗) = β(·) = 1. We show that the action
is not coherent regardless of the choice of the associative operation ?. Suppose (α, β) is
coherent. Then applying (C4) to (∗ ⊗ ∗, ∗ ⊗ ∗), we have β(∗)∗ = β(∗)β(∗)?. So ∗ = ?.
Applying (C4) to (· ⊗ ·, ·,⊗·), we have β(·)· = β(·)β(·)?. So · = ?. This is impossible.
So Theorem 2.4 cannot be applied to give a Hopf algebra structure on free 2-associative
algebras.

However, by verifying (C1) - (C3), we see that the unit action is compatible when ?
is taken to be ∗. Loday and Ronco [30, 31] have equipped a free 2-associative algebra
with a Hopf algebra structure with ∗ as the product. This suggests a possible connection
between compatibility and Hopf algebras.

Similar arguments show that the associative dialgebra (see Example 4.7) and the
operads X± in [26] have no coherent unit actions.

Proof. (1) Let (α, β) be a unit action on P. We say that the unit action (α, β) is coherent

with a relation (
∑

i�
(1)
i ⊗�(2)

i ,
∑

j �
(3)
j ⊗�(4)

j ) in Λ if, for any P-algebras A and B, the
operations � ∈ Ω, when extended to A � B by Eq. (6), still satisfy the same relation.
Then to prove the theorem, we only need to prove that (α, β) is coherent with a given

relation (
∑

i�
(1)
i ⊗ �(2)

i ,
∑

j �
(3)
j ⊗ �(4)

j ) ∈ Λ if and only if (C1) – (C5) hold for this
relation.

Further, by definition, (α, β) is coherent with (
∑

i�
(1)
i ⊗�(2)

i ,
∑

j �
(3)
j ⊗�(4)

j ) means
that, for any P-algebra A and B and for any a, a′, a′′ ∈ A+ and b, b′, b′′ ∈ B+ such that at
least one of b, b′, b′′ is not 1, we have the equation∑

i

(
(a⊗ b)�(1)

i (a′ ⊗ b′)
)
�(2)

i (a′′ ⊗ b′′) =
∑

j

(a⊗ b)�(3)
j

(
(a′ ⊗ b′)�(4)

j (a′′ ⊗ b′′)
)
. (7)

Thus there are 7 mutually disjoint cases for the choice of such b, b′, b′′: the case when none
of b, b′, b′′ is 1, the three cases when exactly one of b, b′, b′′ is 1, and the three cases when
exactly two of b, b′, b′′ are 1. Note that when none of b, b′, b′′ is 1, Eq. (7) just means that

(
∑

i�
(1)
i ⊗ �(2)

i ,
∑

j �
(3)
j ⊗ �(4)

j ) is a relation for P, so is automatic true. Thus to prove
the theorem we only need to prove

Case 1. Eq. (7) holds for b = 1, b′ 6= 1 6= b′′ if and only if (C1) is true;

Case 2. Eq. (7) holds for b′ = 1, b 6= 1 6= b′′ if and only if (C2) is true;

Case 3. Eq. (7) holds for b′′ = 1, b 6= 1 6= b′ if and only if (C3) is true;

Case 4. Eq. (7) holds for b = b′ = 1, b′′ 6= 1 if and only if (C4) is true;

Case 5. Eq. (7) holds for b′ = b′′ = 1, b 6= 1 if and only if (C5) is true;

Case 6. Eq. (7) holds for b = b′′ = 1, b′ 6= 1 if (C1) is true.
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We first consider the three cases when exactly one of b, b′, b′′ is 1. Then by the definition
of the operation � on A � B in Eq. (6), we can rewrite Eq. (7) as∑

i

((
(a?̃a′)?̃a′′

)
⊗
(
(b�̃(1)

i b′)�̃(2)
i b′′

))
=
∑

j

((
a?̃(a′?̃a′′)

)
⊗
(
b�̃(3)

j (b′�̃(4)
j b′′)

))
, (8)

for all 1 ⊗ 1 ⊗ 1 6= b ⊗ b′ ⊗ b′′ ∈ (B+)⊗3. Since ?̃ is associative, by the arbitrariness of A
and a, a′, a′′ ∈ A+ (say by taking a = a′ = a′′ = 1), we see that Eq. (8), and hence Eq.
(7), is equivalent to ∑

i

(
(b�̃(1)

i b′)�̃(2)
i b′′

)
=
∑

j

(
b�̃(3)

j (b′�̃(4)
j b′′)

)
. (9)

Case 1. Assume b = 1 and b′, b′′ 6= 1. Then Eq. (9) is∑
i

(1�̃(1)
i b′)�̃(2)

i b′′ =
∑

j

1�̃(3)
j (b′�̃(4)

j b′′)

and, by Eq. (5), this means∑
i

β(�(1)
i )b′ �(2)

i b′′ =
∑

j

β(�(3)
j )(b′ �(4)

j b′′).

That is,

b′
(∑

i

β(�(1)
i )�(2)

i

)
b′′ = b′

(∑
j

β(�(3)
j )�(4)

j

)
b′′,

for every P-algebra B and b′, b′′ ∈ B. By the following Lemma 2.9, this is true if and only
if ∑

i

β(�(1)
i )�(2)

i =
∑

j

β(�(3)
j )�(4)

j ,

giving (C1).

2.9. Lemma. For �1,�2 ∈ Ω, we have �1 = �2 if and only if a �1 a′ = a �2 a′ for all
P-algebras A and a, a′ ∈ A.

Proof. The only if part is clear. Now suppose a�1 a′ = a�2 a′ for all P-algebras A and
a, a′ ∈ A. Let A be the free P-algebra on one generator x. Then

A = kx⊕ P2 ⊕ · · · .

Here P2 = ⊕ikωi in which {ωi} is a basis of Ω. Also, a binary operation � ∈ Ω acts on
A⊗ A by x� x = � ∈ P2. Thus we have �1 = x�1 x = x�2 x = �2. This proves the if
part.
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Case 2. Assume b′ = 1 and b, b′′ 6= 1. As in Case 1, we have

Eq.(9) ⇔
∑

i

(b�̃(1)
i 1)�̃(2)

i b′′ =
∑

j

b�̃(3)
j (1�̃(4)

j b′′), ∀ b, b′′ ∈ B,

(5)⇔
∑

i

bα(�(1)
i )�(2)

i b′′ =
∑

j

bβ(�(4)
j )�(3)

j b′′, ∀ b, b′′ ∈ B,

⇔
∑

i

α(�(1)
i )�(2)

i =
∑

j

β(�(4)
j )�(3)

j

⇔ (C2).

Case 3. Assume b, b′ 6= 1 and b′′ = 1. As in Case 1, we have

Eq.(9)
(5)⇔
∑

i

(b�(1)
i b′)α(�(2)) =

∑
j

b�(3)
j b′α(�(4)

j ), ∀ b, b′ ∈ B ⇔ (C3).

We next consider the three cases when exactly two of b, b′, b′′ are the identity.

Case 4. Assume b = b′ = 1 and b′′ 6= 1. Now Eq. (8) does not apply. Directly from
Eq. (6), we see that Eq. (7) means∑

i

(
(a�̃(1)

i a′)?̃a′′
)
⊗ (1�̃(2)

i b′′) =
∑

j

(
a?̃(a′?̃a′′)

)
⊗
(
1�̃(3)

j (1�̃(4)
j b′′)

)
.

Then by Eq. (5), we equivalently have∑
i

(
(a�̃(1)

i a′)?̃a′′
)
⊗ (β(�(2)

i )b′′) =
∑

j

(
a?̃(a′?̃a′′)

)
⊗ (β(�(3)

j )β(�(4)
j )b′′).

This means, by moving the scalars β(�(j)
i ) across the tensor product,∑

i

β(�(2)
i )
(
(a�̃(1)

i a′)?̃a′′
)
⊗ b′′ =

∑
j

β(�(3)
j )β(�(4)

j )
(
a?̃(a′?̃a′′)

)
⊗ b′′.

Since this is true for all B and b′′ ∈ B, we equivalently have∑
i

β(�(2)
i )
(
(a�̃(1)

i a′)?̃a′′
)

=
∑

j

β(�(3)
j )β(�(4)

j )
(
a?̃(a′?̃a′′)

)
. (10)

Taking a′′ = 1, we have∑
i

β(�(2)
i )(a�̃(1)

i a′) =
∑

j

β(�(3)
j )β(�(4)

j )(a?̃a′). (11)

Conversely, right multiplying a′′ (by ?̃) to this equation and using the associativity of ?̃,
we obtain Eq. (10). So Eq. (10) and Eq. (11) are equivalent.
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When a and a′ are in A, Eq. (11) becomes∑
i

β(�(2)
i )(a�(1)

i a′) =
∑

j

β(�(3)
j )β(�(4)

j )(a ? a′),

or, equivalently,

a
(∑

i

β(�(2)
i )�(1)

i

)
a′ = a

(∑
j

β(�(3)
j )β(�(4)

j ) ?
)
a′.

By Lemma 2.9, we have ∑
i

β(�(2)
i )�(1)

i =
∑

j

β(�(3)
j )β(�(4)

j ) ? . (12)

This is (C4). To go backwards, assuming (C4), then by the linearity of the map � 7→ �̃
in Eq. (5), we get Eq. (11) for all augmented P-algebras A+. So we are done with Case
4.

Case 5. Assume b 6= 1 and b′ = b′′ = 1. The proof is the same as for Case 4.
Case 6. Assume b = b′′ = 1 and b′ 6= 1. Then Eq. (8) still applies and we get∑

i

(1�̃(1)
i b′)�̃(2)

i 1 =
∑

j

1�̃(3)
j (b′�̃(4)

j 1)

and, by Eq. (5), we get∑
i

(
β(�(1)

i )α(�(2)
i )
)
b′ =

∑
j

(
β(�(3)

j )α(�(4)
j )
)
b′.

Thus ∑
i

β(�(1)
i )α(�(2)

i ) =
∑

j

β(�(3)
j )α(�(4)

j ).

We note that this follows from applying α to (C1). So we do not get a new relation.

(2) We note that the precise meaning of compatibility of the unit action (α, β) with a

relation (
∑

i�
(1)
i ⊗�(2)

i ,
∑

j �
(3)
j ⊗�(4)

j ) in the space of relations Λ of P is the requirement
that Eq. (9) holds for any P-algebra B in the above proof. Thus the verification of the
compatibility condition is equivalent to the verification of (C1), (C2) and (C3). This
proves (2) of Theorem 2.6.

3. Classification of operads with coherent unit actions

We now apply Theorem 2.6 to classify ABQR operads with coherent unit actions and
compatible unit actions. We then discuss some special cases.
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3.1. The classifications. We display the relations of ABQR operads (Ω, Λ, ?) that
admit a coherent or compatible unit action.

3.2. Theorem. Let P = (Ω, Λ, ?) be an ABQR operad of dimension n (that is, dim Ω =
n).

1. There is a coherent unit action (α, β) on P with α 6= β if and only if there is a
basis {�i} of Ω with ? =

∑
i�i such that Λ is contained in the subspace Λ′n, coh of

Ω⊗2 ⊕ Ω⊗2 with the basis

λ′n, coh :=



(?⊗�2,�2 ⊗�2),
(�1 ⊗�1,�1 ⊗ ?),
(�i ⊗�1,�i ⊗�1), 2 ≤ i ≤ n,
(�2 ⊗�j,�2 ⊗�j), 3 ≤ j ≤ n,
(�1 ⊗�i,�i ⊗�2), 3 ≤ i ≤ n,
(�i ⊗�j, 0), (0,�i ⊗�j), 3 ≤ i, j ≤ n.


(13)

2. There is a coherent unit action (α, β) on P with α = β if and only if there is a
basis {�i} of Ω with ? =

∑
i�i such that Λ is contained in the subspace Λ′′n, coh of

Ω⊗2 ⊕ Ω⊗2 with the basis

λ′′n, coh :=

{
(�1 ⊗ ?,�1 ⊗ ?) + (?⊗�1, ?⊗�1)− (�1 ⊗�1,�1 ⊗�1),
(�i ⊗�j, 0), (0,�i ⊗�j), 2 ≤ i, j ≤ n.

}
. (14)

3. There is a compatible unit action (α, β) on P with α 6= β if and only if there is a
basis {�i} of Ω with ? =

∑
i�i such that Λ is contained in the subspace Λ′n, comp of

Ω⊗2 ⊕ Ω⊗2 with the basis

λ′n, comp :=



((�1 +�2)⊗�2,�2 ⊗�2),
(�1 ⊗�1,�1 ⊗ (�1 +�2)),
(�i ⊗�1,�i ⊗�1), 2 ≤ i ≤ n,
(�2 ⊗�j,�2 ⊗�j), 3 ≤ j ≤ n,
(�1 ⊗�i,�i ⊗�2), 3 ≤ i ≤ n,
(�i ⊗�2, 0), (0,�1 ⊗�i), 3 ≤ i ≤ n,
(�i ⊗�j, 0), (0,�i ⊗�j), 3 ≤ i, j ≤ n.


(15)

4. There is a compatible unit action (α, β) on P with α = β if and only if there is a
basis {�i} of Ω with ? =

∑
i�i such that Λ is contained in the subspace Λ′′n, comp of

Ω⊗2 ⊕ Ω⊗2 with the basis

λ′′n, comp :=


(�1 ⊗�1,�1 ⊗�1),
(�1 ⊗�i,�1 ⊗�i) + (�i ⊗�1,�i ⊗�1), 2 ≤ i ≤ n,
(�i ⊗�j, 0), (0,�i ⊗�j), 2 ≤ i, j ≤ n.

 . (16)
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Proof. (1) Let P = (Ω, Λ, ?) be an ABQR operad. Suppose there is a basis {�i} with
? =

∑
i�i such that Λ is contained in the subspace of Ω⊗2⊕Ω⊗2 generated by the relations

(13). Define linear maps α, β : Ω → k by

α(�i) = δ1,i1, β(�i) = δ2,i1, 1 ≤ i ≤ n,

where δi,j is the Kronecker delta. Then α(?) = 1 = β(?) and α 6= β. It is straightforward
to check that each element in (13) satisfies the equations (C1)-(C5) in Theorem 2.6. For
example, we check the first element (?⊗�2,�2 ⊗�2) against (C1)-(C5) and see that

• (C1) means β(?)�2 = β(�2)�2 which holds since β(?) = 1 = β(�2);

• (C2) means α(?)�2 = β(�2)�2 which holds since α(?) = 1 = β(�2);

• (C3) means α(�2)? = α(�2)�2 which holds since α(�2) = 0;

• (C4) means β(�2)? = β(�2)β(�2)? which holds since β(�2) = 1;

• (C5) means α(?)α(�2)α = α(�2)�2 which holds since α(�2) = 0.

Therefore, each element in Λ satisfies the equations (C1)-(C5). Thus the unit action (α, β)
is coherent with P. This proves the “if” part.

To prove the “only if” part, we assume that there is a unit action (α, β) on P that
is coherent and α 6= β. In particular, α(?) = β(?) = 1. Then there are direct sum
decompositions

Ω = k ?⊕ ker α = k ?⊕ ker β.

This, together with α(?) = β(?) = 1, implies that α = β if and only if ker α = ker β.
So we have ker α 6= ker β. In fact, ker α ( ker β and ker β ( ker α since dim ker α =
dim ker β = n− 1. So there are elements �1 ∈ ker β such that α(�1) 6= 0 and �2 ∈ ker α
such that β(�2) 6= 0. By rescaling, we can assume that

α(�1) = 1 = β(�2), α(�2) = 0 = β(�1).

Note that ker(α) and ker(β) are the solution spaces of the linear equations

�1α(�1)x1 + · · ·+ α(�n)xn(= α(x1 �1 + · · ·+ xn�n)) = 0

and
β(�1)x1 + · · ·+ β(�n)xn(= β(x1 �1 + · · ·xn�n)) = 0.

So ker α ∩ ker β is the solution space of the linear system{
α(�1)x1 + · · ·+ α(�n)xn = 0,
β(�1)x1 + · · ·+ β(�n)xn = 0.

Since α 6= β, we see that ker α∩ker β has dimension n− 2. The intersection also contains
? − �1 − �2. So there is a basis �3, · · · ,�n of ker α ∩ ker β such that ? − �1 − �2 =
�3 + · · ·+�n. Therefore ? = �1 + · · ·+�n.



360 KURUSCH EBRAHIMI-FARD AND LI GUO

Now any element λ ∈ Λ is of the form

λ = (
n∑

i,j=1

aij �i ⊗�j,

n∑
i,j=1

bij �i ⊗�j). (17)

Since the unit action (α, β) is coherent on P, λ satisfies each of the five coherence equations
in Theorem 2.6. For (C1), the equation is

∑
ij aijβ(�i)�j =

∑
ij bijβ(�i)�j . By our choice

of the basis {�i}, this means
∑

j a2,j�j =
∑

j b2,j �j . Thus we have

a2,j = b2,j, 1 ≤ j ≤ n. (18)

Similarly, from (C3), we obtain

ai,1 = bi,1, 1 ≤ i ≤ n. (19)

Applying (C2), we obtain
∑

ij aijα(�i)�j =
∑

i,j bijβ(�j)�i . This gives

a1,i = bi,2, 1 ≤ i ≤ n. (20)

Applying (C4), we have
∑

ij aijβ(�j)�i =
∑

ij bijβ(�i)β(�j)? which means∑
i

ai,2�i = b2,2 ? .

If b2,2 = 0, then since {�i} is a basis, we have ai,2 = 0, 1 ≤ i ≤ n. If b2,2 6= 0, then again
since {�i} is a basis and ? =

∑
i�i by construction, we must have ai,2 = b2,2. Thus we

always have
ai,2 = b2,2, 1 ≤ i ≤ n. (21)

As with (C4), applying (C5) gives

a1,1 = b1,j, 1 ≤ j ≤ n. (22)

Some of the relations above are duplicated. For examples, a1,1 = b1,1 is in both Eq.
(19) and Eq. (22). To avoid this we list (21) and (22) first and list the rest only when
needed. Note also that the above relations only involve coefficients with at least one of
the subscripts in {1, 2}. This means that there are no restrictions among the relations

{(�i ⊗�j, 0), (0,�i ⊗�j)| 3 ≤ i, j ≤ n}.

Then we see that λ in Eq. (17) is of the following linear combination of linearly indepen-
dent elements in Ω⊗2 ⊕ Ω⊗2.

λ = b2,2

( n∑
i=1

�i ⊗�2,�2 ⊗�2

)
+ a1,1

(
�1 ⊗�1,�1 ⊗

n∑
j=1

�j

)
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+
n∑

i=2

ai,1

(
�i ⊗�1,�i ⊗�1

)
+

n∑
j=3

a2,j

(
�2 ⊗�j,�2 ⊗�j

)
+

n∑
i=3

a1,i

(
�1 ⊗�i,�i ⊗�2

)
+

n∑
i,j=3

ai,j

(
�i ⊗�j, 0

)
+

n∑
i,j=3

bi,j

(
0,�i ⊗�j

)
.

Recall that ? =
∑

i�i. We see that λ is in Λ′n, coh defined by Eq. (13). So Λ ⊆ Λ′n, coh.

(2) The proof is similar to the last part. To prove the “if” direction, suppose there
is a basis {�i} with ? =

∑
i�i such that Λ is contained in the subspace of Ω⊗2 ⊕ Ω⊗2

generated by the relations (14). Define linear maps α = β : Ω → k by

α(�i) = δ1,i1, 1 ≤ i ≤ n.

Then α(?) = 1 = β(?). It is straightforward to check that elements in (14) satisfy the
equations (C1)-(C5) in Theorem 2.6. Therefore, each element in Λ satisfies the equations
(C1)-(C5). Thus the unit action (α, β) is coherent.

Now we consider the “only if” direction. Let (α, β) be a coherent unit action on P with
α = β. Then we have Ω = k ?⊕ ker α. Let {�2, · · · ,�n} be a basis of ker α = ker β and
define �1 = ?−(�2+ · · ·+�n). We have ? =

∑
i�i, α(�1) = 1 and α(�i) = 0, 2 ≤ i ≤ n.

Let

λ = (
n∑

i,j=1

aij �i ⊗�j,
n∑

i,j=1

bij �i ⊗�j) (23)

be in Λ. Since (α, β) is coherent on P, applying Theorem 2.6, we have

• by (C1),
∑

j a1,j�j =
∑

j b1,j�j, so a1,j = b1,j;

• by (C2),
∑

j a1,j�j =
∑

i bi,1�i, so a1,j = bj,1;

• by (C3),
∑

i ai,1�i =
∑

i bi,1�i, so ai,1 = bi,1;

• by (C4),
∑

i ai,1�i = b1,1?, so ai,1 = b1,1;

• by (C5), a1,1? =
∑

j b1,j�j, so a1,1 = b1,j.

Therefore,
ai,1 = a1,j = bi,1 = b1,j, 1 ≤ i, j ≤ n.

Thus

(
∑

i=1 or j=1

aij �i ⊗�j,
∑

i=1 or j=1

bij �i ⊗�j)

= a1,1(
∑

i=1 or j=1

�i ⊗�j,
∑

i=1 or j=1

�i ⊗�j)

= a1,1

(
(�1 ⊗ ?,�1 ⊗ ?) + ((?−�1)⊗�1, (?−�1)⊗�1)

)
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= a1,1

(
(�1 ⊗ ?,�1 ⊗ ?) + (?⊗�1, ?⊗�1)− (�1 ⊗�1,�1 ⊗�1)

)
.

On the other hand, the coherence equations impose no restriction on other elements in
Ω⊗2 ⊕ Ω⊗2. Therefore λ in Eq. (23) is a linear combination of the elements in Eq. (14).
So Λ is a subspace of the subspace Λ′′n, coh.

(3) The proofs of part (3) of Theorem 3.2 follow from a similar analysis as for part
(1). But we only need to consider (C1)-(C3) which give relations (18), (19) and (20).

(4) Likewise, for the proof of part (4), we only consider (C1)-(C3) in the proof of part
(2). Grouping the resulting relations, we obtain Eq. (16).

3.3. Special cases. We now consider the cases where Ω is of dimension 2 and 3. Suppose
α 6= β. Then from Theorem 3.2 we easily check that

λ′2, coh = λ′2, comp = {(?⊗�2,�2 ⊗�2), (�1 ⊗�1,�1 ⊗ ?), (�2 ⊗�1,�2 ⊗�1)}.

Replacing �1 by ≺ and replacing �2 by �, we obtain the following improvement of
Proposition 1.2 in [25].

3.4. Corollary. Let P = (Ω, Λ, ?) be an ABQR operad with dim Ω = 2. The following
statements are equivalent.

1. There is a coherent unit action (α, β) on P with α 6= β;

2. There is a compatible unit action (α, β) on P with α 6= β;

3. There is a basis (≺,�) of Ω with ? =≺ + � such that Λ is contained in the subspace
of Ω⊗2 ⊕ Ω⊗2 with the basis

{(?⊗ �,� ⊗ �), (≺ ⊗ ≺,≺ ⊗?), (� ⊗ ≺,� ⊗ ≺)}.

Next suppose α = β.

3.5. Corollary. Let P = (Ω, Λ, ?) be an ABQR operad with dim Ω = 2.

1. There is a coherent unit action (α, β) on P with α = β if and only there is a basis
(�1,�2) of Ω with ? = �1+�2 such that Λ is contained in the subspace of Ω⊗2⊕Ω⊗2

with the basis

{(�1 ⊗ ?,�1 ⊗ ?) + (�2 ⊗�1,�2 ⊗�1), (�2 ⊗�2, 0), (0,�2 ⊗�2)}.

2. There is a compatible unit action (α, β) on P with α = β if and only if there is a
basis (�1,�2) of Ω with ? = �1 + �2 such that Λ is contained in the subspace of
Ω⊗2 ⊕ Ω⊗2 with the basis

{(�1⊗�1,�1⊗�1), (�1⊗�2,�1⊗�2)+(�2⊗�1,�2⊗�1), (�2⊗�2, 0), (0,�2⊗�2)}.

Now we consider the dimension three case. Replacing {�1,�2,�3} with {≺,�, ◦} in
Theorem 3.2, we get
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3.6. Corollary. Let P = (Ω, Λ, ?) be an ABQR operad with dim Ω = 3. There is a
coherent unit action (α, β) on P with α 6= β if and only if there is a basis (≺,�, ◦) of Ω
with ? =≺ + � +◦ such that Λ is contained in the subspace with the basis

λ′3, coh = {(≺ ⊗ ≺,≺ ⊗?), (� ⊗ ≺,� ⊗ ≺), (?⊗ �,� ⊗ �), (� ⊗◦,� ⊗◦),
(≺ ⊗◦, ◦⊗ �), (◦⊗ ≺, ◦⊗ ≺), (◦ ⊗ ◦, 0), (0, ◦ ⊗ ◦)}.

Clearly the relations in Eq. (3) and (4) of the dendriform trialgebra and NS-algebra,
respectively, are contained in λ′3, coh, so have coherent unit actions, as were shown in
[18, 25]. We also note that when n ≥ 3, compatibility does not imply coherency for unit
actions.

4. Coherent unit actions on products and duals of operads

We briefly recall the concept of the black square product of ABQR operads [7, 26], and
show that coherent and compatible unit actions are preserved by the black square product.
We then recall the concept of the dual operad and show that, other than a trivial case,
coherence and compatibility are not preserved by taking the duals.

4.1. Products of operads. For ABQR operads (Ω1, Λ1, ?1) and (Ω2, Λ2, ?2), and for

�(i) ∈ Ωi, i = 1, 2, we use a column vector
[
�1

�2

]
to denote the tensor product �1 ⊗�2 ∈

Ω1 ⊗ Ω2. For fi = (�(1)
i ⊗�(2)

i ,�(3)
j ⊗�(4)

j ) ∈ Ω⊗2
i ⊕ Ω⊗2

i , i = 1, 2, define[
f1

f2

]
=

([
�(1)

1

�(1)
2

]
⊗

[
�(2)

1

�(2)
2

]
,

[
�(3)

1

�(3)
2

]
⊗

[
�(4)

1

�(4)
2

])
∈ (Ω1 ⊗ Ω2)

⊗2 ⊕ (Ω1 ⊗ Ω2)
⊗2.

This extends by bilinearity to all fi ∈ Ω⊗2
i ⊕ Ω⊗2

i , i = 1, 2. We define a subspace of
(Ω1 ⊗ Ω2)

⊗2 ⊕ (Ω1 ⊗ Ω2)
⊗2 by

Λ1 � Λ2 =

{[
f1

f2

] ∣∣∣fi ∈ Λi, i = 1, 2

}
.

So Λ1 � Λ2 is a space of relations for the operator space Ω1 ⊗ Ω2.

It is easy to see [7] that the operad P := (Ω1 ⊗ Ω2, Λ1 � Λ2) with the operation
[

?1

?2

]
is also an ABQR operad [7], called the black square product of P1 and P2 and denoted
P1 � P2. See [37] for further studies of � .

We recall the following results from [7] for later reference.

4.2. Proposition.

1. The quadri-algebra of Aguiar and Loday [4], defined by four binary operations ↗
,↖ ,↘ ,↙ and 9 relations, is isomorphic to the black square product PD � PD where
PD = (ωD, λD, ?D) is the dendriform dialgebra in Eq. (2).
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2. The ennea-algebra of Leroux [17], defined by 9 binary operations

↖ , ↑ ,↗ ,≺ , ◦ ,� ,↙ , ↓ ,↘

and 49 relations, is isomorphic to the black square product PT � PT where PT =
(ωT , λT , ?T ) is the dendriform trialgebra in Eq. (3).

3. The dendriform-Nijenhuis algebra [18], equipped with 9 binary operations

↗ , ↘ , ↙ , ↖ , ↑ , ↓ , ≺̃ , �̃ , •̃

and 28 relations, is isomorphic to the black square product PT � PN where PT =
(ωT , λT , ?T ) and PN = (ωN , λN , ?N) are the dendriform trialgebra and the NS-algebra
in Eq. (4), respectively.

4. The octo-algebra [19], defined using 8 operations

↗i,↖i,↙i,↘ i , i = 1, 2

and 27 relations, is isomorphic to the third power PD � PD � PD of the dendriform
dialgebra PD = (ωD, λD, ?D).

4.3. Unit actions on products. We now use Theorem 2.6 to show that coherent unit
actions on ABQR operads are preserved by the black square product and thus give rise
to Hopf algebra structures on the free objects of the product operad.

For i = 1, 2, let Pi := (Ωi, Λi, ?i) be an ABQR operad and let (αi, βi) be a unit action
on Pi. Let P = P1 � P2 and define

α := α1 ⊗ α2 (resp. β := β1 ⊗ β2) : Ω1 ⊗ Ω2 → k

by

α

([
�1

�2

])
= α1(�1)α2(�2) (resp. β

([
�1

�2

])
= β1(�1)β2(�2)).

Then (α, β) defines a unit action on P.

4.4. Theorem. Let Pi := (Ωi, Λi, ?i), i = 1, 2, be ABQR operads with coherent unit
actions (αi, βi). Then the unit action (α1 ⊗ α2, β1 ⊗ β2) on the ABQR operad P :=

P1 � P2 := (Ω1 ⊗ Ω2, Λ1 � Λ2,
[

?1

?2

]
) is also coherent. Therefore, The augmented free P-

algebra P(V )+ on a k-vector space V is a connected Hopf algebra.

It will be clear from the proof that, if P1 and P2 have compatible unit actions, then
so does their product.
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Proof. By Theorem 2.6, we just need to verify that the relations in Λ1 � Λ2 satisfy (C1)–
(C5) with the unit action (α, β) on P. We recall that a relation in Λ1 � Λ2 is of the
form [

f1

f2

]
:=

(∑
i1,i2

[
�(1)

i1

�(1)
i2

]
⊗

[
�(2)

i1

�(2)
i2

]
,
∑
j1,j2

[
�(3)

j1

�(3)
j2

]
⊗

[
�(4)

j1

�(4)
j2

])
for (

∑
i1
�(1)

i1
⊗�(2)

i1
,
∑

j1
�(3)

j1
⊗�(4)

j1
) ∈ Λ1 and (

∑
i2
�(1)

i2
⊗�(2)

i2
,
∑

j2
�(3)

j2
⊗�(4)

j2
) ∈ Λ2.

Then by bilinearity of the product
[
�1

�2

]
and the equation (C1) for P1 and P2, we have

∑
i1,i2

β

([
�(1)

i1

�(1)
i2

])[
�(2)

i1

�(2)
i2

]
=
∑
i1,i2

β1(�(1)
i1

)β2(�(1)
i2

)

[
�(2)

i1

�(2)
i2

]

=

[∑
i1

β1(�(1)
i1

)�(2)
i1∑

i2
β2(�(1)

i2
)�(2)

i2

]

=

[∑
j1

β1(�(3)
j1

)�(4)
j1∑

j2
β2(�(3)

j2
)�(4)

j2

]

=
∑
j1,j2

β1(�(3)
j1

)β2(�(3)
j2

)

[
�(4)

j1

�(4)
j2

]

=
∑
j1,j2

β

([
�(3)

j1

�(3)
j2

])[
�(4)

j1

�(4)
j2

]
.

This gives (C1) for the product operad P. Conditions (C2) and (C3) can be verified in
the same way.

For (C4), we have∑
i1,i2

β

([
�(2)

i1

�(2)
i2

])[
�(1)

i1

�(1)
i2

]
=
∑
i2,i2

β1(�(2)
i1

)β2(�(2)
i2

)

[
�(1)

i1

�(1)
i2

]

=

[∑
i1

β1(�(2)
i1

)�(1)
i1∑

i2
β2(�(2)

i2
)�(1)

i2

]

=

[∑
j1

β1(�(3)
j1

)β1(�(4)
j1

)?1∑
j2

β2(�(3)
j2

)β2(�(4)
j2

)?2

]

=
∑
j1,j2

β1(�(3)
j1

)β1(�(4)
j1

)β2(�(3)
j2

)β2(�(4)
j2

)

[
?1

?2

]

=
∑
j1,j2

β

([
�(3)

j1

�(3)
j2

])
β

([
�(4)

j1

�(4)
j2

])[
?1

?2

]
.

This gives (C4) for the product operad P. The same works for (C5).



366 KURUSCH EBRAHIMI-FARD AND LI GUO

By Proposition 4.2 and Theorem 4.4 we immediately obtain the following results on
Hopf algebras.

4.5. Corollary.

1. (Loday[25]) Augmented free quadri-algebras are Hopf algebras;

2. (Leroux[17]) Augmented free ennea-algebras are Hopf algebras;

3. (Leroux[18]) Augmented free Nijenhuis-dendriform algebras are Hopf algebras;

4. (Leroux[19]) Augmented free octo-algebras are Hopf algebras;

4.6. Duality of ABQR operads. We now recall the definition of the dual [7, 23, 26] of
an ABQR operad before we study the relation between coherent unit actions and taking
duals.

For an ABQR operad P = (Ω, Λ, ?), let Ω̌ := Hom(Ω,k) be the dual space of Ω, giving
the natural pairing

〈 , 〉Ω : Ω× Ω̌ → k.

Then Ω̌⊗2 is identified with the dual space of Ω⊗2, giving the natural pairing

〈 , 〉⊗2 : Ω⊗2 × Ω̌⊗2 → k, 〈x⊗ y, a⊗ b〉⊗2 = 〈x, a〉Ω 〈y, b〉Ω.

We then define a pairing

〈 , 〉 : (Ω⊗2 ⊕ Ω⊗2)× (Ω̌⊗2 ⊕ Ω̌⊗2) → k (24)

by
〈(α, β), (γ, δ)〉 = 〈α, γ〉⊗2 − 〈β, δ〉⊗2, α, β ∈ Ω⊗2, γ, δ ∈ Ω̌⊗2.

We now define Λ⊥ to be the annihilator of Λ ⊆ Ω⊗2 ⊕ Ω⊗2 in Ω̌⊗2 ⊕ Ω̌⊗2 under the
pairing 〈 , 〉. We call P ! := (Ω̌, Λ⊥) the dual operad of P = (Ω, Λ) which is the Koszul
dual in our special case. It follows from the definition that (P !)! = P.

4.7. Example. (Associative dialgebra [23, Proposition 8.3]) Let (ΩD, ΛD) be the operad
for the dendriform dialgebra. Let {a,`} ∈ Ω̌D be the dual basis of {≺,�} (in this order).
Then Λ⊥D is generated by

{(a ⊗ a,a ⊗ a), (` ⊗ `,` ⊗ `), (a ⊗ a,a ⊗ `), (` ⊗ a,` ⊗ a), (a ⊗ `,` ⊗ `)}.

It is called the associative dialgebra and is denoted PAD = (ΩAD, ΛAD). It has two asso-
ciative operations a and `, giving two ABQR operads (ΩAD, ΛAD,a) and (ΩAD, ΛAD,`).
They are isomorphic under the correspondence a↔`.

Other examples of duals of ABQR operads can be found in [7, 29].
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4.8. Unit actions on duals. A natural question to ask is whether the dual of an
ABQR operad P = (Ω, Λ, ?) with a coherent unit action still has a coherent unit action.
When Ω has one generator, the answer is positive. This is because the generator must
be the associative operation ?. Then (Ω, Λ, ?) is the operad for associative algebras, with
the coherent unit action given by α(?) = β(?) = 1. The dual operad is isomorphic to the
operad itself, so again admits a coherent unit action. We now show that this is the only
case that coherent unit action is preserved by taking the dual.

4.9. Theorem. Suppose that an ABQR operad P = (Ω, Λ, ?) with n = dim Ω ≥ 2 has a
compatible unit action. Let P! = (Ω̌, Λ⊥) be the dual operad.

1. P! has an associative operation, so is an ABQR operad. In fact it has n linearly
independent associative operations.

2. P! does not have a compatible unit action for any choice of associative operation.

The same is true when compatible is replaced by coherent.

For example the associative dialgebra operad PAD in Example 4.7 does not have a
coherent unit action even though it has two linearly independent associative binary oper-
ations ` and a.

Proof. (1) First assume that the compatible unit action on the given ABQR operad
(Ω, Λ) satisfies α 6= β. Let {�1, · · · ,�n} be the bases of Ω given in the proof of Theo-
rem 3.2.(3). So we have ∑

i

�i = ?, α(�i) = δ1,i, β(�i) = δ2,i.

Then by Theorem 3.2, Λ is a subspace of the subspace Λ′n, comp of Ω⊗2 ⊕Ω⊗2 with a basis

λ′n, comp :=



((�1 +�2)⊗�2,�2 ⊗�2),
(�1 ⊗�1,�1 ⊗ (�1 +�2)),
(�i ⊗�1,�i ⊗�1), 2 ≤ i ≤ n,
(�2 ⊗�j,�2 ⊗�j), 3 ≤ j ≤ n,
(�1 ⊗�i,�i ⊗�2), 3 ≤ i ≤ n,
((�i ⊗�2, 0), (0,�1 ⊗�i), 3 ≤ i ≤ n,
(�i ⊗�j, 0), (0,�i ⊗�j), 3 ≤ i, j ≤ n.


(25)

Let {�̌i} be the dual basis of {�i}. So �̌i(�j) = δi,j, 1 ≤ i, j ≤ n.
Then the pairing (24) between Ω⊗2 ⊕ Ω⊗2 and Ω̌⊗2 ⊕ Ω̌⊗2 is given by

〈(�i ⊗�j,�k ⊗�`), (�̌s ⊗ �̌t, �̌u ⊗ �̌v)〉 = δi,sδj,t − δk,uδ`,v.

Consider x = (�̌1 ⊗ �̌1, �̌1 ⊗ �̌1). Then the pairing between x and the second element
in λ′n, comp is 1 − 1 = 0. The pairing between x and every other element in λ′n, comp is
also 0 since �̌1 ⊗ �̌1 does not occur in the element. Thus x = (�̌1 ⊗ �̌1, �̌1 ⊗ �̌1) is in
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Λ′n, comp
⊥ and hence in Λ⊥, the relation space of P!. This shows that P! has an associative

operation. The same argument works for (�̌i ⊗ �̌i, �̌i ⊗ �̌i), 2 ≤ i ≤ n, giving n linearly
independent associative operations.

Next assume that the compatible unit action on the given ABQR operad (Ω, Λ) sat-
isfies α = β. Let {�1, · · · ,�n}, n = dim Ω, be the basis of Ω given in the proof of
Theorem 3.2.(4). Then as in the last case, we check that (�̌i ⊗ �̌i, �̌i ⊗ �̌i), 1 ≤ i ≤ n,
are in Λ′′n, comp

⊥ ⊆ Λ⊥, again showing that P! is ABQR .

(2) Suppose that there is a choice of associative operation ? in Ω̌ and a unit action
(α, β) that is compatible with (Ω̌, Λ⊥, ?). First assume that α 6= β. We easily verify that
the three relations

(�̌2 ⊗ �̌1, �̌2 ⊗ �̌1), (�̌1 ⊗ �̌1, �̌1 ⊗ �̌1), (�̌2 ⊗ �̌2, �̌2 ⊗ �̌2) (26)

are in Λ′n, comp
⊥ and hence in Λ⊥. So they should satisfy the compatible equations (C1)-

(C3) in Theorem 3.2. Applying (C2) to the first relation in Eq. (26), we obtain α(�̌2)�̌1 =
β(�̌1)�̌2. So

α(�̌2) = β(�̌1) = 0. (27)

Applying (C2) to the second relation in Eq. (26), we have α(�̌1) = β(�̌1), yielding
α(�̌1) = 0 by Eq. (27). Applying (C2) to the third relation in Eq. (26), we have
α(�̌2) = β(�̌2), giving β(�̌2) = 0 by Eq. (27). For i ≥ 2, we check that (�̌i ⊗ �̌2, 0) and
(0, �̌1⊗ �̌i) are in Λ′n, comp

⊥ and hence in Λ⊥, so satisfy (C1)-(C2). Applying (C1) to the
first relation gives β(�̌i)�̌2 = 0. So β(�̌i) = 0. Applying (C3) to the second equation
gives α(�̌i)�̌1 = 0. So α(�̌i) = 0. Therefore α and β are identically zero. But this is
impossible, since α(?) and β(?) should be 1.

Next assume that α = β. For each i ≥ 2 (there is such an i since dim Ω ≥ 2), we check
that (�̌1 ⊗ �̌i, �̌1 ⊗ �̌i) and (�̌i ⊗ �̌1, �̌i ⊗ �̌1) are in Λ′′n, comp

⊥ ⊆ Λ⊥. Applying (C2) to
them, we get

α(�̌1)�̌i = β(�̌i)�̌1, α(�̌i)�̌1 = β(�̌1)�̌i.

So α(�̌1) = β(�̌i) = 0 and α(�̌i) = β(�̌1) = 0, i ≥ 2. Thus α and β are identically zero,
giving a contradiction.

Finally if P has a coherent unit action, then it automatically has a compatible unit
action. So by part (1), P! is an ABQR operad, but does not have a compatible unit action.
It therefore does not have a coherent unit action.
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