
Theory and Applications of Categories, Vol. 16, No. 7, 2006, pp. 132–143.

PRESERVING HOMOLOGY

MICHAEL BARR

Abstract. We raise the question of saying what it means for a functor between abelian
categories to preserve homology. We give a kind of answer and explore the reasons it is
unsatisfactory in general (although fine for left or right exact functors).

1. Introduction

As far as I know the question of what does it mean for a functor to preserve homology has
not been studied, let alone answered. In this note, we repair the first lacuna, although
not the second. To my surprise there seems to be no completely satisfactory answer.

What does it mean for a functor to preserve the homology of a differential object?
It is clear what it means for a functor to preserve a limit or a colimit, since limits and
colimits are defined by universal mapping properties. For example, if F : A �� B is
a functor, there is a canonical map F (A1 × A2) �� FA1 × FA2 and if that map is an
isomorphism, then F preserves that product.

In contrast, there is no possibility of defining what it means for a functor to preserve
tensor product in a category, since that is not defined by any universal mapping property.
What is needed in that case is additional structure, which raises coherence questions and
it can get quite complicated. But essentially, the functor requires what is called tensorial
strength.

The situation with homology falls between the two cases. Homology is defined as
a cokernel of a map to a kernel and we know what it means to preserves kernels and
cokernel. A functor that preserves both preserves homology. In this paper we analyze
what is actually required for a particular functor to preserve the homology of a particular
differential object. However homology can also be defined as a kernel of a map to a
cokernel and one would hope that that the conditions for preserving the two versions are
the same. Alas, that turns out not to be the case.

What we do here is show that if F : A �� B is an additive functor between abelian
categories and (C, d) is a differential object (which could, of course, be graded) there
is a span HF (C, d) �� Φ(C, d) �� FH(C, d), but not generally a natural map in
either direction. One could say that F preserves the homology if both legs of the span
are isomorphisms. But a differential object in A is also a differential object in Aop with
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exactly the same homology and it thus came as a considerable surprise that the homology
could be preserved in the sense just described, while the cohomology (the homology in
the dual space) is not. This raises the question of whether there is a different, self dual,
notion of preservation.

We also show an additive functor preserves the homology of all differential objects if
and only if it is exact and find necessary and sufficient conditions on a differential object
that its homology is preserved by all additive functors. At least that condition is self dual.

All categories considered in this paper are abelian and all functors are additive.

1.1. Notation. Let (C, d) be a differential object. We will denote by Z(C, d) and Z ′(C, d)
the kernel and cokernel of d, by B(C, d) the image of d, (which is also the coimage of d),
by H(C, d) the cokernel of the inclusion B(C, d) �� Z(C, d) and by H ′(C, d) the kernel
of the induced map Z ′(C, d) �� B′(C, d). Our notation for arrows will be as in the
following exact sequences:

0 �� Z(C, d) z �� C b �� B(C, d) �� 0 (1)

0 �� B(C, d) b′ �� C z′ �� Z ′(C, d) �� 0 (2)

0 �� B(C, d) s �� Z(C, d)
p �� H(C, d) �� 0 (3)

0 �� H ′(C, d)
p′ �� Z ′(C, d) s′ �� B(C, d) �� 0 (4)

These satisfy the following equations:

b = s′ ◦ z′ b′ = z ◦ s d = b′ ◦ b z′ ◦ z = p′ ◦ p

Only the last equation is not obvious. But each side takes an element of Z to its image
in Z ′ = C/B. It will be convenient to denote by t the map s ◦ b : C �� Z(C, d) as well
as t′ = b′ ◦ s′ : Z ′(C, d) �� C. In addition, we will use the convention that if we have
a map f , then f � will denote a left inverse, if any exists, and similarly f r will denote a
right inverse, if any exists.

If F : A �� B is an additive functor, then (FC, Fd) is a differential object in B and
we will denote it by F (C, d). In addition, we will use ZF (C, d), BF (C, d), and HF (C, d),
as well as the primed forms to denote the corresponding objects of B. We will use zF ,
bF , sF , and pF , as well as their primed forms, to denote the arrows that correspond. On
the other hand, FZ(C, d), FB(C, d), FH(C, d), Fz, Fb, Fs, and Fp, as well as all the
primed forms, denote the values of F on the corresponding objects and arrows.

2. Preservation of homology

Generally when we ask about functors preserving some structure, there will be a map
in one direction or other depending on when the functor is applied. Often this comes
about because the structure is characterized by a universal mapping property. However
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homology, generally defined as a cokernel of a kernel cannot be so characterized. So before
we can ask whether a functor preserves homology, we have to say what preservation means.
We will give a definition here that seems at first to be satisfactory, but turns out not to
be for the reasons just described.

The exactness of 0 �� ZF (C, d) zF �� FC Fd �� FC implies the existence of a map
u : FZ(C, d) �� ZF (C, d) such that zF ◦ u = Fz. In the diagram

FC ZF (C, d)
tF

��

FC

FC

=

��

FC FZ(C, d)Ft �� FZ(C, d)

ZF (C, d)

u

��
ZF (C, d) HF (C, d)

pF
��

FZ(C, d)

ZF (C, d)

FZ(C, d) FH(C, d)
Fp �� FH(C, d)

HF (C, d)

FH(C, d) 0��

HF (C, d) 0��

(5)

the bottom row is exact, but the top is not in general. From this diagram, it is clear that if
F preserves the left exactness of (1), u is an isomorphism and then the universal mapping
property of the cokernel implies the existence of a natural map HF (C, d) �� FH(C, d).
If, on the other hand, F preserves the right exactness of (1), then the top row is a cokernel
and there is a natural map FH(C, d) �� HF (C, d). In general, there is no map in either
direction and it appears that the best we can do is a span. Let q : FZ(C, d) �� Φ(C, d)
be a cokernel of Ft. Then there are unique maps r : Φ(C, d) �� FH(C, d) and � :
Φ(C, d) �� HF (C, d) such that r ◦ q = Fp and � ◦ q = pF ◦ u. Thus the span is

HF (C, d) FH(C, d)

Φ

HF (C, d)

�

����
��

��
��

��
��

�
Φ

FH(C, d)

r

���
��

��
��

��
��

��

It is clear that when Fp is a cokernel of Ft, then we can take Φ(C, d) = FH(C, d) and then
� : FH(C, d) �� HF (C, d) is the map described above. It is also evident that when u is
an isomorphism, we can take Φ(C, d) = HF (C, d) and then r : HF (C, d) �� FH(C, d)
is the map described above. In general, neither exactness condition is satisfied and the
best we can get is a span.

2.1. Example. Suppose f : A′ �� A is a map in A and we let C = A′ ⊕ A and

d have the matrix

(
0 0
f 0

)
. Then one easily calculates that H(C, d) = ker f ⊕ cok f ,

FH(C, d) = F (ker f)⊕F (cok f), HF (C, d) = ker Ff⊕cok Ff and Φ = F (ker f)⊕cok Ff .
The span is

ker Ff ⊕ cok Ff F (ker f) ⊕ F (cok f)

F (ker f) ⊕ cok Ff

ker Ff ⊕ cok Ff

�

����
��

��
��

��
��

F (ker f) ⊕ cok Ff

F (ker f) ⊕ F (cok f)

r

���
��

��
��

��
��

�
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The maps � and r are those induced by the universal mapping properties of kernels and
cokernels.

So far, this looks like a convincing way of answering the original question. Homology
is preserved when � and r are isomorphisms. The problem comes from the fact that
homology can equally well be defined in the dual category. In fact, there is a completely
symmetric way of doing this. The sequence

0 �� Z z �� C d �� C z′ �� Z ′ �� 0

is exact. Then the image of z′ ◦ z : Z �� Z ′ is H(C, d) = H ′(C, d). Of course, the image
of a map in an abelian category is the same as its coimage (that is the main thing needed
for a category to be abelian) so this definition is self-dual. Everything can be dualized
and a cospan Φ′ can be constructed to give one big diagram:

FZ(C, d) FH(C, d)
Fp �� FH(C, d) FZ ′(C, d)

Fp′ ��FC FZ(C, d)Ft �� FZ ′(C, d) FCFt′ ��FC

FC

=

��

FZ(C, d)

ZF (C, d)

u

��

FZ(C, d)

Φ(C, d)

q

����������
FC

FC

=

��
Z ′F (C, d)

FZ ′(C, d)

u′

��

Φ(C, d)

FH(C, d)
r

�������

FH(C, d)

Φ′(C, d)

r′

���
��

��

Φ′(C, d)

FZ ′(C, d)
q′ 		��������

FC

FC

��

=Φ(C, d)

HF (C, d)
� ���

��
��

FC ZF (C, d)tF �� ZF (C, d) HF (C, d)
pF �� Z ′F (C, d) FCFt′ ��HF (C, d)

Φ′(C, d)

�′

�������
HF (C, d) Z ′F (C, d)

p′F ��

(6)

What we would like is that r ◦ �−1 = r′−1 ◦ �′ as relations HF (C, d) ����� FH(C, d) and
that � ◦ r−1 = �′−1 ◦ r′ : FH(C, d) ����� HF (C, d). The two equalities are equivalent, both
being true if and only if

Φ

(
�
r

)
�� FH(C, d) ⊕ HF (C, d)

(�′ −r′ )
�� Φ′

is exact.

2.1. Revisited. When we calculate the span and cospan in the example, we get

ker Ff ⊕ cok Ff F (ker f) ⊕ F (cok f)

F (ker f) ⊕ cok Ff

ker Ff ⊕ cok Ff

�

����
��

��
��

��
��

F (ker f) ⊕ cok Ff

F (ker f) ⊕ F (cok f)

r

���
��

��
��

��
��

�

ker Ff ⊕ cok Ff

ker Ff ⊕ F (cok f)

r′

���
��

��
��

��
��

�
ker Ff ⊕ cok Ff F (ker f) ⊕ F (cok f)F (ker f) ⊕ F (cok f)

ker Ff ⊕ F (cok f)

�′

����
��

��
��

��
��

(7)

which not only commutes, but is both a pullback and pushout and the sequence (7) is
exact with zeroes at both ends.

Unfortunately, this example is not characteristic of the general case. We do have some
desirable properties.
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2.2. Theorem. The diagram

HF (C, d) FH(C, d)

Φ(C, d)

HF (C, d)

�

����
��

��
��

��
��
Φ(C, d)

FH(C, d)

r

���
��

��
��

��
��

�

HF (C, d)

Φ′(C, d)

�′

���
��

��
��

��
��

�
HF (C, d) FH(C, d)FH(C, d)

Φ′(C, d)

r′

����
��

��
��

��
��

commutes.

Proof. We begin by showing that

ZF (C, d) Z ′F (C, d)
z′F ◦ zF

��

FZ(C, d)

ZF (C, d)

u

��

FZ(C, d) FZ ′(C, d)Fz′ ◦Fz �� FZ ′(C, d)

Z ′F (C, d)

��

u′

commutes. In fact u′ ◦ z′F ◦ zF ◦ u = Fz′ ◦ Fz from the universal properties that defined
u and u′. An instance of z′ ◦ z = p′ ◦ p (see 1.1) is z′F ◦ zF = p′F ◦ pF , while the result of
applying F to the same equation is Fz′ ◦ Fz = Fp′ ◦ Fp. Now we have

q′ ◦ r′ ◦ r ◦ q = Fp′ ◦ Fp = Fz′ ◦ Fz = u′ ◦ z′F ◦ zF ◦ u = u′ ◦ p′F ◦ Fp ◦ u = q′ ◦ �′ ◦ � ◦ q

But q′ is monic and q is epic, so they can be cancelled to produce r′ ◦ r = �′ ◦ �.

An immediate consequence is

2.3. Corollary. If � and r′ are isomorphisms, then r ◦ �−1 = r′−1 ◦ �′ : HF (C, d) ��

FH(C, d) and if r and �′ are isomorphisms then � ◦ r−1 = �′−1 ◦ r : FH(C, d) ��

HF (C, d).

2.4. Theorem. For a fixed differential object (C, d), the map r is an isomorphism if and

only if FC Ft �� FZ(C, d)
Fp �� FH(C, d) �� 0 is exact; � is an isomorphism if and

only if 0 �� FZ Fz �� FC Fd �� FC is exact.

Proof. The map r is the unique map for which

FC FZ(C, d)
Ft

��

FC

FC

=

��

FC FZ(C, d)Ft �� FZ(C, d)

FZ(C, d)

=

��
FZ(C, d) FH(C, d)

Fp
��

FZ(C, d)

FZ(C, d)
��

FZ(C, d) Φ(C, d)
Fp �� Φ(C, d)

FH(C, d)

r

��
FH(C, d) 0��

Φ(C, d)

FH(C, d)

Φ(C, d) 0�� 0

0
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commutes. Since the top line is exact, r is an isomorphism if and only if the bottom line
is. As for �, it is defined so that

FC ZF (C, d)
tF

��

FC

FC

=

��

FC FZ(C, d)Ft �� FZ(C, d)

ZF (C, d)

u

��
ZF (C, d) HF (C, d)

pF
��

FZ(C, d)

ZF (C, d)
��

FZ(C, d) Φ(C, d)
Fp �� Φ(C, d)

HF (C, d)

�

��
HF (C, d) 0��

Φ(C, d)

HF (C, d)

Φ(C, d) 0�� 0

0

commutes. We wish to show that � is an isomorphism if and only if u is. Since tF = sF ◦ bF
we have a commutative diagram

BF (C, d) ZF (C, d)
sF

��

FC

BF (C, d)

bF

��

FC FZ(C, d)
Ft �� FZ(C, d)

ZF (C, d)

u

��
ZF (C, d) HF (C, d)

pF
��

FZ(C, d)

ZF (C, d)
��

FZ(C, d) Φ(C, d)
Fp �� Φ(C, d)

HF (C, d)

�

��
HF (C, d) 0��

Φ(C, d)

HF (C, d)

Φ(C, d) 0�� 0

0

ZF (C, d)

FC

zF

��

0 BF (C, d)�� BF (C, d)

0
��

in which both rows and the column are exact. The snake lemma implies that

ZF (C, d) �� ker u �� ker � �� 0 �� cok u �� cok � �� 0

is exact. It is immediate that if u is an isomorphism, so is � and that if � is an isomorphism,
then u is epic. We finish by showing that u is also monic in that case. To show this, it
suffices to show that the map ZF (C, d) �� ker u is 0 or, equivalently, that Ft ◦ zF = 0.
Since u is epic, it suffices to show that Ft ◦ zF ◦ u = Ft ◦ Fz = 0 which follows immediately
from t ◦ z = 0.

Dualizing, we obtain

2.5. Theorem. For a fixed differential object (C, d), the map r′ is an isomorphism if and

only if 0 �� FH(C, d)
Fp′ �� FZ ′(C, d) Ft′ �� FC is exact; � is an isomorphism if and

only if FC Fd �� FC Fz′ �� FZ ′ �� 0 is exact.

In the following, the “if” is a consequence of the above, while the “only if” follows
immediately from the example 2.1
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2.6. Theorem. The maps � and r′ are isomorphisms for every (C, d) if and only if F is
left exact; r and �′ are isomorphisms for every (C, d) if and only if F is right exact.

The previous results can be summarized as follows.

2.7. Theorem. Let (C, d) be a fixed differential object. In the diagram

Z(C, d) C��

C

Z(C, d)

t

��

C C= �� C

C

d

��

H(C, d) Z ′(C, d)
p′

��

Z(C, d)

H(C, d)

p

��

Z(C, d) C
z �� C

Z ′(C, d)

t′

��
Z ′(C, d) C

z′
��

C

Z ′(C, d)
��

C C
d �� C

C

=

��
0 H(C, d)��

0

0

0 Z(C, d)�� Z(C, d)

H(C, d)

0 0

H(C, d)

0
��

H(C, d) Z ′(C, d)Z ′(C, d)

0
��

(�)

(r′)

(r) (�′)

F preserves the exactness of the sequences labelled (�), (r), (�), and (r′) if and only if the
maps �, r, �′, and r′, resp., are isomorphisms.

3. Absolutely preserved homology

We can ask what properties of a differential object forces every additive functor to preserve
its homology. If H is an arbitrary object of A, the complex (H, 0) obviously has this
property. We will show in this section that, up to homotopy, this is the only example.
We begin with:

3.1. Theorem. Let (C, d) be a differential object. Then � and r (and dually, �′ and r′)are
isomorphisms for all additive functors to an abelian category if and only if the sequence

0 �� Z(C, d) z �� C d �� C z′ �� Z ′(C, d) �� 0

is contractible.

Proof. Contractibility implies that both sequences

0 �� Z(C, d) �� C �� B(C, d) �� 0

and
0 �� B(C, d) �� C �� Z ′(C, d) �� 0
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split. But if B(C, d) �� C is split monic, so is B(C, d) �� Z(C, d) and then the
sequence

0 �� B(C, d) �� Z(C, d) �� H(C, d) �� 0

is split, from which the preservation under all functors is clear. Conversely, suppose that
r is an isomorphism for every left exact functor F . In the diagram,

0 FB(C, d)�� FB(C, d) FZ(C, d)��

FC

FB(C, d)

Ft

��

FC FZ(C, d)�� FZ(C, d)

FZ(C, d)

=

��
FZ(C, d) FH(C, d)

Fp
��

FZ(C, d)

FZ(C, d)

FZ(C, d) Φ(C, d)
q �� Φ(C, d)

FH(C, d)

r

��

Φ(C, d) 0��

we first observe that q and r are epic and therefore so is Fp. The snake lemma then gives
us the exact sequence

ker Ft �� 0 �� 0 �� cok Ft �� 0 �� 0

so that Ft is also epic and hence both sequences

0 �� FZ(C, d) �� FC �� FB(C, d) �� 0

and
0 �� FB(C, d) �� FZ(C, d) �� FH(C, d) �� 0

are exact. First let F = Hom(B(C, d),−) to show that the first one splits and then let
F = Hom(H(C, d)) to show that the second one does. Now apply the same argument on
the dual to show the same things for

0 �� B(C, d) �� C �� Z ′(C, d) �� 0

and
0 �� H(C, d) �� Z ′(C, d) �� B(C, d) �� 0

We will demonstrate the existence of the contracting homotopy after the next theorem.

3.2. Theorem. Let (C, d) have the property that any additive functor preserves its ho-
mology. Then (C, d) is homotopic to (H(C, d), 0) (and conversely).

Proof. We use the preceding result. The following sequences are split exact and the
splittings are denoted as shown:

0 �� Z(C, d)
z�

����
z

C
br

����
b

B �� 0

0 �� B(C, d)
s�

����
s

Z(C, d)
pr

����
p

H(C, d) �� 0
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This means that z� ◦ z, s� ◦ s, b ◦ br, and p ◦ pr are all identities and, in addition, z ◦ z� +
br ◦ b = 1 and s ◦ s� + p ◦ pr = 1. We define f = p ◦ z� : C �� H(C, d) and g =
z ◦ pr : H(C, d) �� C. We begin by showing that f and g are maps between (C, d) and
(H(C, d), 0). We have f ◦ d = p ◦ z� ◦ b′ ◦ b = p ◦ z� ◦ z ◦ s ◦ b = p ◦ s ◦ b = 0 = d ◦ f . We also
have d ◦ g = d ◦ z ◦ pr = 0 = g ◦ d. We also calculate that f ◦ g = p ◦ z� ◦ z ◦ pr = p ◦ pr = 1.
We will show that if we define h = br ◦ s� ◦ z� : C �� C, then 1 − g ◦ f = h ◦ d + d ◦ h. We
calculate that

1 − g ◦ f = 1 − z ◦ pr ◦ p ◦ z� = 1 − z ◦(1 − s ◦ s�) ◦ z�

= 1 − z ◦ z� + z ◦ s ◦ s� ◦ z� = br ◦ b + z ◦ s ◦ sl ◦ z�

Then

h ◦ d = br ◦ s� ◦ z� ◦ z ◦ t = br ◦ s� ◦ s ◦ b = br ◦ b

and

d ◦ h = v ◦ b ◦ br ◦ s� ◦ z� = z ◦ s ◦ s� ◦ zl

so that h ◦ d + d ◦ h = 1 − g ◦ f which establishes the homotopy.

As for the converse, if (C, d) is homotopic to (H(C, d), 0), then this is preserved by
any functor and the previous theorem provides the required splittings.

The proof of Theorem 3.1 will be complete when we have proved the following, which
should have been done in [Barr, 2002, Section 3.2], but unaccountably was not.

3.3. Lemma. Suppose f : (C, d) �� (C ′, d) and g : (C ′, d) �� (C, d) are homotopy
inverse to each other. Then (C, d) is contractible if and only if (C ′, d) is.

Proof. What we will actually show is that if (C, d) is contractible and f ◦ g is homotopic to
the identity, then (C ′, d) is contractible. In fact, suppose h : C �� C and s : C ′ �� C ′

are such that d ◦ h + h ◦ d = 1 and d ◦ s + s ◦ d = 1 − f ◦ g. Let k = s + f ◦ h ◦ g. Then

d ◦ k + k ◦ d = d ◦(s + f ◦ h ◦ g) + (s + f ◦ h ◦ g) ◦ d = d ◦ s + s ◦ d + d ◦ f ◦ h ◦ g + f ◦ h ◦ g ◦ d

= 1 − f ◦ g + f ◦ d ◦ h ◦ g + f ◦ h ◦ d ◦ g = 1 − f ◦ g + f ◦(d ◦ h + h ◦ d) ◦ g

= 1 − f ◦ g + g ◦ f = 1

so that (C ′, d) is contractible.

4. Conclusion

We begin with an example that shows that preservation of homology (at least as defined
here) is not always the same as preservation of cohomology, even though the objects are
the same.
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4.1. Example. Here is an example to illustrate the use of Theorem 2.7, as well as illustrate
the main problem. Take as domain and range category, the category Ab of abelian groups
(although it would be the same if we used finite abelian groups or even finite abelian 2-
groups). We will denote by Zn the cyclic group of order n. We let (C, d) = (Z8, 4), which
is to say that the boundary is multiplication by 4. Then Z(C, d) = Z4, B(C, d) = Z2 and
H(C, d) = Z2. We define F : Ab �� Ab as Z2 ⊗ Hom(Z4,−). Thus F is the composite
of a right exact functor and a left exact one. For any non-zero cyclic 2-group A, it is
obvious that F (A) = Z2 and hence FH(C, d) ∼= HF (C, d) as an abstract group. But the
game is in what F does to arrows. By writing F = F2 ◦ F1 where F1 = Hom(Z4,−) and
F2 = Z2 ⊗− we can readily compute the following values, in which �� �� and �� �� denote
an epimorphism and monomorphism, resp. In fact, there is more than one epimoprhism
Z8

�� Z4, but any two are related by an automorphism of the domain or codomain.

F (Z8
�� �� Z4) = F2(Z4

2 �� Z4) = Z2
0 �� Z2

F (Z4
�� �� Z2) = F2(Z4

�� �� Z2) = Z2
1 �� Z2

F (Z2
�� �� Z4) = F2(Z2

�� �� Z4) = Z2
0 �� Z2

F (Z4
�� �� Z8) = F2(Z4

1 �� Z4) = Z2
1 �� Z2

Putting these together, we can, for example, calculate that

F (Z8
�� �� Z2

�� �� Z8) = Z2
0 �� Z2

0 �� Z2 = Z2
0 �� Z2

so that F (C, d) = (Z2, 0). The diagram of the theorem above becomes

Z4 Z8
��

Z8

Z4

t

��

Z8 Z8
= �� Z8

Z8

4

��

Z2 Z4
p′

��

Z4

Z2

p

��

Z4 Z8
z �� Z8

Z4

t′

��
Z4 Z8

z′
��

Z8

Z4

��

Z8 Z8
4 �� Z8

Z8

=

��
0 Z2

��

0

0

0 Z4
�� Z4

Z2

0 0

Z2

0
��

Z2 Z4Z4

0
��

(�)

(r′)

(r) (�′)
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In this diagram, t is the map Z4
�� �� Z2

�� �� Z4, z′ is the map Z4
�� �� Z2

�� �� Z8 and
the others are forced by exactness. When we apply F , then using the rules above, we get

Z2 Z2
��

Z2

Z2

0

��

Z2 Z2
= �� Z2

Z2

0

��

Z2 Z20
��

Z2

Z2

1

��

Z2 Z2
1 �� Z2

Z2

0

��
Z2 Z21

��

Z2

Z2

��

Z2 Z2
0 �� Z2

Z2

=

��
0 Z2

��

0

0

0 Z2
�� Z2

Z2

0 0

Z2

0
��

Z2 Z2Z2

0
��

(�)

(r′)

(r) (�′)

and we can see by inspection that the sequences labelled (�) and (r) are exact, while those
labelled (�′) and (r′) are not. Thus the bispan is

Z2 Z2

Z2

Z2

1

����
��

��
��

��
��

�
Z2

Z2

1

���
��

��
��

��
��

��

Z2

Z2

0

���
��

��
��

��
��

��
Z2 Z2Z2

Z2

0

����
��

��
��

��
��

�

and hence the two relations are certainly different.
Incidentally, if you replace F by G defined by G(A) = Hom(Z2,Z4 ⊗A), the situation

is reversed: � and r are 0, while �′ and r′ are the identity.

4.2. Conclusion. There are three possible conclusions to choose among.

1. Simply accept the fact that, although homology and cohomology of the same differ-
ential object are isomorphic, their preservation conditions are distinct.

2. Require that in order to say that F preserves homology, all of �, r, �′, and r′ be
preserved (if any three are, so is the fourth).

3. Search for a more convincing criterion.
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At this point, it is not clear which one to choose. Here is one idea that did not work.
Let Ψ(C, d) be defined as a coequalizer of the map Fd : FC �� FC. The universal
mapping property results in maps Ψ(C, d) �� FB(C, d) and Ψ(C, d) �� BF (C, d).
Now let Θ(C, d) be a coequalizer of the composite Ψ �� FB(C, d) �� FC. This and
its dual leads to a bispan

HF (C, d) FH(C, d)

Θ(C, d)

HF (C, d)
����

��
��

��
��

��
Θ(C, d)

FH(C, d)
���

��
��

��
��

��
�

HF (C, d)

Θ′(C, d)
���

��
��

��
��

��
�

HF (C, d) FH(C, d)FH(C, d)

Θ′(C, d)
����

��
��

��
��

��

Unfortunately, when this is applied to 4.1, exactly the same problem arises: the upper
two arrows are identities and the lower two are 0. In fact, Θ = Φ both in that example
and in 2.1. Thus it is not obvious whether Θ is actually different from Φ, but the question
does not seem worth pursuing.
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