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POINTS OF AFFINE CATEGORIES

AND
ADDITIVITY

A. CARBONI & G. JANELIDZE

Abstract. A category C is additive if and only if, for every object B of C, the category
Pt(C, B) of pointed objects in the comma category (C, B) is canonically equivalent to
C. We reformulate the proof of this known result in order to obtain a stronger one that
uses not all objects of B of C, but only a conveniently defined generating class S. If C
is a variety of universal algebras, then one can take S to be the class consisting of any
single free algebra on a non-empty set.

1. Additive Objects

For any category X with a terminal object 1, we denote with

Pt(X)

the category of (global) points x:1 −→ X of X, with maps the obvious commutative
triangles. Observe that the category Pt(X) is pointed, i.e. the terminal is also initial,
and recall that for any category C and any object B of C, the the category of objects
over B, i.e. the comma cateory (C, B) has a terminal object, namely the identity map
of B. Hence the objects of the pointed category Pt(C, B) are triples (A,α, β), where
α: A −→ B and β: B −→ A are maps in C such that αβ = 1 and the maps are the maps
in C for wich the two resulting triangles commute. We will refer to α as the “structural
map”.

We now revisit a result due to D. Bourn (see [Bourn 1991]), which inverts a remark
contained in [Carboni 1989], according to which, for any additive category C with kernels,
and any object B of C the functor

( ) ⊕ B:C −→ Pt(C, B)

is in fact an equivalence, the adjoint inverse being the kernel of the structural map to
B. We give a proof of Bourn’s result, according to which if for a (necessarily) pointed
category C with finite limits and finite sums, all the functors ( ) + B are equivalences,
then C is additive. The reason is not just for the self-completeness of this note, but also
because we will give a proof more appropriate for the discussion in the next section.
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Let C be a pointed category with finite limits and finite coproducts. For an object B
in C, consider the adjunction

(F,G, η, ε):C −→ Pt(C, B)

in which:

1. the functor F :C −→ Pt(C, B) is defined by

F (X) = (B + X, [1, 0], i1) ,

where [1, 0] is the morphism B + X −→ B induced by the identity 1: B −→ B and
the zero map 0: X −→ B, and i1 is the injection i1: B −→ B + X;

2. the functor G: Pt(C, B) −→ C is given by the kernel of the structural map A −→ B;

3. ηX : X −→ GF (X) = B�X = Ker([1, 0]: B + X −→ B) is the unique morphism
X −→ B�X for which the composite

X −→ B�X −→ B + X

is the second injection.

4. ε(A,α,β) = [β, ker(α)]: FG(A,α, β) = (B + Ker(α), [1, 0], i1) −→ (A,α, β).

1.1. Proposition. If the adjunction (F,G, η, ε) satisfies one of the following equivalent
conditions

a) is an equivalence,

b) G is full and faithful,

c) ε is an isomorphism,

then the canonical morphism
B + X −→ B × X

is an isomorphism for every object X in C.

Proof. Take (A,α, β) = (B×X, π1, 〈1, 0〉), where π1: B×X −→ B is the projection and
〈1, 0〉 is the pair given by the identity and the zero maps. Since the kernel of π1: B×X −→
B can be identified with 〈0, 1〉: X −→ B+X, it is easy to see that ε(A,α,β) can be identified
with the morphism B + X −→ B × X, which therefore is an isomorphism as desired.

As for the equivalence with the other two conditions, just observe that from the pre-
vious proof it follows that, instead of requiring the adiunction be an equivalence, we
could have required just ε be an isomorphism. Moreover, observe that we always have
G(B × X, π1, 〈1, 0〉) � X, so that G is always essentially surjective on objects.
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From now on, B will denote the full subcategory of C with objects all B in C, for
which the morphism B + X −→ B × X is an isomorphism for every X in C.

1.2. Proposition. B is closed (in C) under finite products and finite coproducts, and
has a unique enrichment in the category of commutative monoids.

Proof. We observe:

a) Obviously, 0 is in B.

b) Given A and B in B and X in C, we have canonical isomorphisms

(A + B) + X � A + (B + X) � A × (B × X) � (A × B) × X � (A + B) × X,

which prove that B is closed under finite sums.

c) ) If A and B in B, then their product in C is isomorphic to their coproduct.
Therefore b) implies that B is closed under finite products.

d) As follows from c) and the definition of B, for every two objects A and B in B,
the canonical morphism A + B −→ A × B inside B (and in the sense of B) is an
isomorphism. Therefore, B has a unique enrichment in the category of commutative
monoids, as desired.

From now on, A will denote the full subcategory of C with objects all B in C, for
which the adjunction (F,G, η, ε) is an equivalence. As follows from Proposition 1, A is
contained in B. Note also, that since B is a full subcategory of C closed under finite
products and enriched in the category of commutative monoids, every object of B has a
unique (commutative) internal monoid structure in C; in particular the same is true for
every object of A.

1.3. Proposition. Every object of A has a unique internal abelian group structure in C.

Proof. For an object B in A, take (A,α, β) = (B × B, π1, 〈1, 1〉) in the notation above.
Since ε is an isomorphism, so is the morphism

ε(A,α,β) = [〈1, 1〉, 〈0, 1〉]: FG(A,α, β) =

= (B + B, [1, 0], i1) −→ (B × B, π1, 〈1, 1〉).
However this is now happening inside of a category in which the finite coproducts are

canonically isomorphic to finite products (namely inside B); therefore the above morphism
is the same as

〈1, 1〉 + 〈0, 1〉: B × B −→ B × B ,

and, of course, this morphism is an isomorphism if and only if B is a group.
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This result of course implies the quoted result of Bourn, but it is phrased in such a
way to allow us to apply it to the next question.

2. Involving Generators

For a ring R, the category Aff(R) of affine spaces over R can be described as the category
of all pairs (A, a), where A is an R-module and a an element of A. That is, one can define
Aff(R) as the comma category (R,R-Mod). Furthermore, we can recover the category
R-Mod from Aff(R) as the comma category (Aff(R), R) = ((R,R-Mod), R). Or, we could
say that R-Mod can be recovered from the comma category (R-Mod, R) as the category
(R, (R-Mod, R)) = Pt(R-Mod, R) of its points. Does this tell us something about the
additivity of R-Mod? That is, given a variety V of universal algebras, is it true that if V
is canonically equivalent to Pt(V), where R is the free algebra on one element, then V
is additive? And if so, is this an instance of a general-categorical fact? In other words,
we wish to find out the minimal condition on a class S of objects of a pointed C, such
that when the canonical functors from C the the categories of points of the slices over the
objects of S are equivalences, then C is additive. Clearly we need an appropriate notion
of a class S of generators for such categories C, and we propose the following:

2.1. Definition. A class S of objects in C is said to be a class of generators if it satisfies
the following condition: Let X be generated by S as a full subcategory in C closed under
finite products and finite coproducts. Then the restriction of the Yoneda functor

C −→ SetsX
op

sending any object C to the hom functor

homC(−, C):Xop −→ Sets

is full and faithful.

2.2. Theorem. If C admits a class of generators contained in A, then C is additive.

Proof. Take S and X as in the definition above, assuming that S is contained in A, and
observe:

a) Since S is contained in B and B is closed under under finite products and finite
coproducts in C, then X is contained in B.

b) Since every object in S has a group structure, a) tells that X is additive.

c) Since the restriction of the Yoneda functor is full and faithful, it is easy to see that
b) implies the additivity of C (just consider the intermediate category of product
preserving functors Xop −→ Sets).
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Note that if C were a variety of universal algebras, and S is the free algebras on one
generator, then the restriction of the Yoneda functor C −→ SetsX

op

is full and faithful,
but C −→ SetsS

op

is not. Note also that although Definition 4 uses both (finite) products
and coproducts, to obtain X from S, under the assumptions of Theorem 5 these products
and coproducts coincide. The only reason of involving both products and coproducts is
that in general neither of these two concepts is superior to the other.
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