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A MONADIC APPROACH TO POLYCATEGORIES

JÜRGEN KOSLOWSKI

Abstract. In the quest for an elegant formulation of the notion of “polycategory”
we develop a more symmetric counterpart to Burroni’s notion of “T -category”, where T
is a cartesian monad on a category X with pullbacks. Our approach involves two such
monads, S and T , that are linked by a suitable generalization of a distributive law in the
sense of Beck. This takes the form of a span TS �� ω �� ST in the functor category [X,X]
and guarantees essential associativity for a canonical pullback-induced composition of
S -T -spans over X, identifying them as the 1-cells of a bicategory, whose (internal)
monoids then qualify as “ω-categories”. In case that S and T both are the free monoid
monad on set , we construct an ω utilizing an apparently new classical distributive law
linking the free semigroup monad with itself. Our construction then gives rise to so-
called “planar polycategories”, which nowadays seem to be of more intrinsic interest than
Szabo’s original polycategories. Weakly cartesian monads on X may be accommodated
as well by first quotienting the bicategory of X-spans.

0. Motivation and Outline

Lately multicategories have received renewed attention in the field of higher-dimensional
category theory, cf., [Lei98] and [Her00], respectively. But in categorical logic, where
they were introduced originally by Jim Lambek in the 1960’s [Lam69], without imposing
further structure multicategories correspond to a rather simple logical system. Basi-
cally the comma separating objects in the domain list is interpreted as a conjunction.
Cut-elimination holds for (in hindsight) fairly trivial reasons. On the other hand, poly-
categories, where lists of objects are allowed not just as domains but also as codomains of
morphisms, at least in their planar variant are of much greater interest in categorical logic.
It was shown by Robin Cockett and Robert Seely [CS92, CS97] that planar polycategories
are closely related to linearly distributive categories. These in turn correspond precisely
to the tensor-par fragment of linear logic. There the cut-elimination procedure is highly
nontrivial, and has an interesting graph-theoretic representation in terms of proof nets.

While small multicategories have been characterized elegantly as monoids in a bicat-
egory of set-spans with free set-monoids as domains, a special case of Albert Burroni’s
notion of T -category [Bur71], no such description of small polycategories seems to have
been available so far. To keep this paper self-contained, Section 1 reviews the basic set-up
for multicategories before addressing Manfred E. Szabo’s original definition of polycat-
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egories [Sza75]. The language of circuit diagrams turns out to be a valuable tool in
this context. In Section 2 we recall a family of grph-based multicategories (nowadays
known as “fc-multicategories”) C-spn� that for suitable choices of C provides a convenient
environment for stating our problem and later for the solution.

We then investigate distributive laws in the sense of Jon Beck [Bec69] between cartesian
monads S and T on a category X with pullbacks in Section 3. If these are cartesian in
a suitable sense, such distributive laws indeed allow the construction of new bicategories
with the same objects as X and “S -T -spans” as 1-cells, i.e., spans with domains of the
form XS and codomains of the form Y T , cf., Theorem 3.2. Monoids in such bicategories
can then be viewed as “S -T -categories”. For polycategories, however, where S and T
coincide with the free monoid monad (_)∗ on set , there is no distributive law to get this
construction off the ground.

Clearly, in this case a more symmetric substitute for distributive laws would be desir-
able. Utilizing the decomposition of (_)∗ into the free semigroup monad and the exception
monad, in Section 4 we define a relation on (_)∗∗ by means of three cartesian distributive
laws that still allows us to construct a bicategory of (_)∗-(_)∗-spans. Its monoids turn out
to be precisely the small planar polycategories. Szabo’s original polycategories require a
different construction and a span instead of a relation. However, as the language of circuit
diagrams shows, only the notion of planar polycategory admits a 2-dimensional generaliza-
tion, where objects are replaced by typed 1-cells. The resulting “fc-polycategories” have
essentially the same characterization as planar polycategories, but over the base grph
rather than set . In view of other shortcomings of Szabo’s original concept this suggests
that planar polycategories may indeed be the “correct” generalization of multicategories.

One of the three distributive laws used in the construction above behaves like a “com-
plementation” on the free semigroup monad and seems to be new. We identify its algebras
as associative double semigroups. In fact, the free such structure on a set B can be ex-
tended from B++ to an associative double monoid structure on B∗∗.

Section 5 addresses the fundamental question, which spans between TS and ST cor-
rectly generalize (cartesian) distributive laws and provide an essentially associative compo-
sition for S -T -spans over X with canonical units. This contrasts with Elisabeth Burroni’s
approach [Bur73], who weakened the notion of associativity for her notion of D-catégories
in order to encompass the non-cartesian power-set monad. Our definition of cartesian
generalized distributive law is best formulated in the fc-multicategory [X,X]-spn� of
spans and morphisms in [X,X]. This clarifies an apparent asymmetry in our notion of
cartesian distributive law (Section 3), thus justifying the added generality.

Finally, in Section 6 we show how by first quotienting the bicategory X-spn the
constructions outlined above can be used even for weakly cartesian monads. In particular
this applies to the free commutative monoid monad, which fails to be cartesian. We than
adapt the construction for planar polycategories to obtain symmetric polycategories in a
similar fashion.

In preliminary form some of these results were presented at CTCS 2002 in Ottawa.



A MONADIC APPROACH TO POLYCATEGORIES 127

1. Polycategories informally

In 1969 Lambek introduced multicategories as a framework for his logic-inspired syntactic
calculus [Lam69]. In terms of pasting diagrams or circuit diagrams [CKS00] (which we
prefer here), the theory of multicategories concerns the compositional properties of “multi-
2-cells” g0, g1, . . . , gn−1

β �� h of the form

...��g1�����• �� ��
��

• gn−1
�������

•
g0 �������

h

��β • or
g0 g1 ... gn−1

h

β (1-00)

The input or source is a finite, possibly empty, list of “1-cells”, while the output or target
is a single 1-cell. These 1-cells may even be typed: the nodes (in the pasting version),
respectively, the regions (in the circuit version) between the 1-cells then provide the
corresponding “0-cells” or “objects” serving as sources (left), respectively, targets (right)
for the 1-cells cf. Example 2.1.

We may compose two multi-2-cells vertically by substituting the first into the second
at a specific matching 1-cell. (Since inputs may occur repeatedly, the exact position of
the composition has to be specified.) This corresponds to the cut operation of logic for se-
quents with one conclusion. Besides associativity of binary substitution and the existence
of “identity 2-cells” 1f for each 1-cell f , Lambek also had to require “commutativity”: for
any distinct i, j < n in Diagram (1-00) two multi-2-cells with codomains gi and gj, respec-
tively, may be substituted into β “in parallel”, i.e., in this case the order of substitution
does not matter.

The need for commutativity indicates a shortcoming of binary substitution as the prin-
cipal operation in this context. Consider, instead, the operation of “multi-substitution”
that combines a finite list of multi-2-cells and a single multi-2-cell such that the list of
targets of the former and the source of the latter match, e.g.,

Φ0 Φ1

...

Φn−1

h

α0 α1 αn−1

β

g0 g1 gn−1

We use double lines with capital Greek labels to indicate lists, possibly empty, of (typed)
1-cells. If precisely one αi is not an identity 2-cell, we recover binary substitution. And if
multi-substitution is associative, Lambek’s commutativity requirement is an easy conse-
quence of the the existence of identity 2-cells. Also notice that composing the empty list
of multi-2-cells with an input-free multi-2-cell β leaves β unchanged.

Already in 1971 this view of multicategories with multi-substitution as basic operation
was subsumed by Albert Burroni’s notion of (internal) T -category (for a cartesian monad
T on a category with pullbacks, cf. Section 2). Just as small categories are monads in
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the bicategory of set-spans, small multicategories arise as monads in a bicategory of T -
spans C0T �� s C1

t 	� C0, where T is the free monoid monad on set [Bur71, Proposition
III.3.23].

Advances in higher-dimensional category theory led to renewed interest in T -catego-
ries in the mid-1990’s, notably by Tom Leinster [Lei98] and by Claudio Hermida [Her00].
More recently, Maria Manuel Clementino and Walter Tholen have proposed starting from
a bicategory of V-valued relations or matrices for symmetric monoidal closed V instead of
from a bicategory of spans [CT03]. This leads to a notion of “V-enriched T -category”.

It is important to note that á priori there is no provision for horizontally composing
multi-2-cells, not even 1-cells. Such an operation ⊗, called “tensor product” in the un-
typed case, only becomes available in the context of what Hermida called “representable
multicategories”, cf. [Her00, Definition 8.3] and Definition 1.1 below.

Manfred E. Szabo in 1975 generalized multicategories to polycategories [Sza75] by also
allowing finite lists of 1-cells as output of what we now call “poly-2-cells”. (Notice that
in 1974 Ellen Redi, supervised by Jaak Hion, used the term “polycategories” for multi-
categories in the sense of Lambek [Red74].) Szabo considered a composition modeled on
the binary cut operation in logic for sequents with multiple inputs and outputs, implicitly
linked by conjunction (“and”) and disjunction (“or”), respectively. Such cuts can only be
performed along single 1-cells: the implicit links between two 1-cells joining two poly-2-
cells would differ at the input and the output side, cf. Remark 1.2(a) below. In terms of
circuit diagrams,

the binary cut of

Γ

∆0 x ∆1

α and

Γ0 x Γ1

∆

β along x results in

Γ0 Γ Γ1

∆0 ∆ ∆1

α

β

x (1-01)

Besides the obvious requirements of associativity and the existence of identity 2-cells,
Szabo also had to impose a commutativity condition: whenever

Γ1

∆0 x ∆1

α1 and

Γ3

∆2 y ∆3

α3 are to be composed with

Γ0 x Γ2 y Γ4

∆

β (1-02)

along x and y, respectively, the order of this composition does not matter, provided that
one of ∆0 and ∆2 and one of ∆1 and ∆3 is empty. Vertical reflection yields a second such
commutativity condition.

Even though locally the output of α and the input of β remain planar, the composed
diagram in (1-01) may fail to be planar. This phenomenon does not occur for multicat-
egories and presents an obstacle to considering typed 1-cells in this context. Restricting
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the admissible cuts by requiring one of Γ0 and ∆0 as well as one of Γ1 and ∆1 to be empty
will avoid this problem and results in four planar “shapes” of binary cuts:

Γ0 Γ Γ1

∆

α

β

x ,

Γ Γ1

∆0 ∆

α

β

x ,

Γ

∆0 ∆ ∆1

α

β

x ,

Γ0 Γ

∆ ∆1

α

β

x (1-03)

For planar polycategories only binary cuts of this form are allowed.

1.1. Definition. (Hermida [Her00, Definition 8.3], cf. [CKS03, Section 2.1]) A multi-
2-cell Γ

α �� x is said to represent the list Γ of (typed) 1-cells as input , provided that in
any context Γ0, Γ1 cutting with α at x, as in the first instance of Diagram (1-03), induces
bijections between poly-2-cells

Γ0, x, Γ1
�� ∆

= Γ0, Γ, Γ1
�� ∆

that are natural in Γ0, Γ1 and ∆, in the sense that they commute with all binary cut
operations on any of the 1-cells in Γ0, Γ1 and ∆.

Dual notion: The comulti-2-cell x
β �� ∆ as in the third instance of Diagram (1-03)

represents ∆ as output .
A (planar) polycategory is called representable, if every (typed) list of 1-cells can be

represented both as input and as output.

1.2. Remarks.

(a) Clearly, it suffices to require the representability of (typed) binary lists x, y and
nullary lists εA, where A ranges through the 0-cells that provide types for the 1-
cells. For a given choice of representing multi-2-cells, we denote their outputs by
x⊗y and �A, respectively. Dually, the inputs of chosen representing comulti-2-cells
will be denoted as x ⊕ y and ⊥A.

In a representable polycategory two poly-2-cells can only be linked by a list Γ of
1-cells, if Γ can be represented both as input and as output by the same 1-cell. This
trivially is the case for singleton lists, and also in compact-closed polycategories,
where the so-called tensors ⊗ and ⊕ agree, but not in general.

(b) Multiplicative linear logic can be modeled by ∗-autonomous categories. Dropping
the explicit negation led J. R. B. Cockett and R. A. G. Seely to introduce “weakly
distributive categories” [CS92] and [CS97], later renamed to “linearly distributive
categories”, that carry two monoidal structures with “tensors” ⊗ and ⊕ linked by
so-called “linear distributions”

A ⊗ (B ⊕ C) 	� (A ⊗ B) ⊕ C and (A ⊕ B) ⊗ C 	� A ⊕ (B ⊗ C) (1-04)
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subject to certain coherence conditions. In view of (a) these are just representable
planar polycategories. Tensors that need not be symmetric are most naturally re-
alized as compositions of typed 1-cells, i.e., in a 2-dimensional setting. This led to
the notion of linear bicategory in [CKS00].

(c) Planar polycategories support a notion of adjunction, cf. [CKS00] and [CKS03].
Such “linear adjunctions” may be used to simulate negation in categorical logic. The
restriction to singleton outputs for multi-2-cells is a major obstacle to expressing
such a concept in multicategories.

(d) Unfortunately, important intended examples for the original notion of polycategory
turned out not to satisfy the commutativity requirement. If a category C with finite
products and coproducts is “distributive” in the sense that all canonical morphisms

A × B + A × C
δ� 	� A × (B + C) and A × C + B × C δr 	� (A + B) × C

are isomorphisms, consider C-objects as untyped 1-cells and C-morphisms from the
product of Γ to the coproduct of ∆ as poly-2-cells. A composition as in (1-01) that
is associative and has the expected identities can be realized via

∏
Γ0 ×

∏
Γ × ∏

Γ1

id×α×id

	

	�
∑

∆0 +
∑

∆ +
∑

∆1

∏
Γ0 × (

∑
∆0 + X +

∑
∆1) ×

∏
Γ1

	�
∑

∆0 + (
∏

Γ0 × X × ∏
Γ1) +

∑
∆1

id+β+id

�


where X is a C-object and the second step first utilizes the inverses of δ� and δr and
then appropriate projections in the outer summands.

Cockett and Seely showed [CS97, Proposition 3.1] that this composition satisfies
Szabo’s commutativity requirement iff C is a pre-order, i.e., a distributive lattice.
This confirmed lingering doubts that distributive categories captured the proof the-
ory for the ∧/∨-fragment of intuitionistic logic.

Concretely, commutativity may already fail in the following situation

1 1

1 0 1

id id

id

0 0

The two possible compositions result in the inclusions of 1 = 1× 1 into 1+1, which
differs from 1, unless C is a poset.

(e) The intersecting 1-cells in the resulting diagram of (1-01) cannot be simulated in a
planar fashion by special poly-2-cells that interchange a pair of 1-cells, since that
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would lead, e.g., to diagrams of the form

z Γ

y ∆

α

γ

β

y

x

z

If one cuts α and γ along y first, the resulting poly-2-cell will be linked with β along
two 1-cells, which in general is not allowed.

While in a representable polycategory with symmetric tensors ⊗ and ⊕ all wires
can intersect, the restrictions imposed on intersecting wires in case of non-symmetric
tensors are rather curious. In fact, we do not know any natural examples of this
phenomenon. To properly express symmetry without reference to representability
one should replace free monoids by free commutative monoids, i.e., sets of bags or
multi-sets, cf., Section 6.

Planar or not, the binary cuts above ought to be special cases of composing suitably
matching lists 〈Γi

αi �� ∆i : i < n 〉 and 〈Φj
βj �� Ψj :j < m 〉 of poly-2-cells simultaneously

or in parallel, i.e., of “poly-substitution”. Which matching conditions does this impose
on the list 〈∆i : i < n 〉 of codomain lists, and the list 〈Φj : j < m 〉 of domain lists, and
how can they be expressed at the level of the free monoid monad? Clearly, in the planar
case all possible parallel compositions can be expressed in terms of sequential binary
compositions. However, non-planarity may lead to parallel composites not accounted for
by Szabo’s notion of polycategory.

1.3. Example. [Planar compositions] It is easy to see that there are 2|n−1| possible
geometric configurations for a planar composition using n > 0 1-cells (cf. Example 4.1).
Up to n ≤ 3 and modulo horizontal and vertical reflections these are

α0

β0

,

α0 α1

β0

,

α0 α1 α2

β0

α0 α1

β0 β1

(1-05)

(The inputs of the αi and the outputs of the βj are irrelevant and have been left off.)

1.4. Example. [Non-planar compositions] The smallest non-planar circuit diagrams
have three 1-cells and four multi-2-cells. In case of four 1-cells we already have eighteen
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non-planar geometric configurations; modulo reflections:

(3)

α0 α1

β0 β1

1

2
0

,

(4.0)

α0 α1 α2

β0 β1

3
1

2
0

(4.1)

α0 α1 α2

β0 β1

3

1

0
2

(4.2)

α0 α1 α2

β0 β1

1

2 0

3

(4.3)

α0 α1 α2

β0 β1

3

1

2
0

(4.4)

α0 α1 α2

β0 β1

1

2
0 3

(1-06)

Configurations (4.0) – (4.2) derive from (3) by adding a new input to β0, while in (4.3)
and (4.4) β1 gets another input. No further non-planar configurations with four 1-cells
arise from the last two configurations of Diagram (1-05), hence our list is exhaustive. The
1-cell labels indicate a possible order for sequential composition. While this need not be
unique, in configurations (4.0) and (4.1) the order of occurrence is determined for the
βi. Notice that sequential composition according to (1-01) in (4.1) leads to 1-cell no. 3
intersecting all outputs of β0 rather than its inputs, as in this more compact presentation.
A similar phenomenon occurs in (4.2) with 1-cell no. 3 and the outputs of β1 (and also
in (4.4), if one starts composing with 1-cell no. 2 rather than no. 0). However, not all
configurations are legitimate in Szabo’s sense:

(4)

α0 α1

β0 β1

,

(5.0)

α0 α1 α2 α3

β0 β1

f

,

(5.1)

α0 α1 α2 α3

β0 β1

g
,

(6.0)

α0 α1 α2 α3 α4

β0 β1

,

(6.1)

α0 α1 α2 α3 α4

β0 β1

(1-07)

In configuration (4) the result of any threefold sequential composition is linked along
two 1-cells with the remaining poly-2-cell, which in general is not allowed. The same
phenomenon occurs, whenever the undirected graph determined by the 1-cells between
prospective domain and codomain contains a cycle and thus fails to be simply connected
in the sense that removing any 1-cell increases the number of components.

The other configurations, even though simply connected, still cannot be sequentialized.
Responsible are the interlocking “wedges” 〈α0, β0, α2〉 and 〈α1, β1, α3〉 in case of (5.0),
respectively, 〈α0, β0, α3〉 and 〈α1, β1, α4〉 in case of (6.0). E.g., in configuration (5.0)
early introduction of β0 effectively makes α1 inaccessible and thus prevents β1 from being
introduced. Similarly, early introduction of β1 blocks off α2 and hence β0. Analogous
wedge arguments apply to configurations (5.1) and (6.1).

Notice, however, that replacing f in configuration (5.0) by a 1-cell between α1 and
β0, or between α2 and β1, yields a sequentiazable configuration. Replacing g in (5.1) by
a 1-cell between α1 and β1 or between α2 and β0 has a similar effect. Hence the criterion
of interlocking wedges needs further refinement in as far as certain poly-2-cells then must
not be connected by 1-cells.

1.5. Theorem. For non-empty lists 〈Γi
αi �� ∆i : i < n 〉 and 〈Φj

βj �� Ψj : j < m 〉 of
poly-2-cells a legitimate sequentiaizable composition á la Szabo is specified by a permutation
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of the concatenated codomains ∆i, i < n, realized by potentially intersecting 1-cells, that
agrees with the concatenated domains Φj, j < m, such that

(S0) the induced undirected graph is simply connected;

(S1) each codomain ∆i and each domain Φj remains locally planar;

(S2) whenever there is a sub-configuration of solid 1-cells of the form

αi αj αk αl

βp βq

or

βi βj βk βl

αp αq

or

αi αj αk αl

βp βq

or

βi βj βk βl

αp αq

where the poly-2-cells in the domain, respectively codomain, need not be immediate
neighbors, precisely one further 1-cell has to exist along the dotted lines.

Proof. What remains to be shown is that in case (S1) is satisfied, non-sequentiazability
implies the existence of a cycle or one of the forbidden configurations.

For positions v, w < m of the poly-2-cells in the codomain we write v � w provided
that in sequential composition, due to their respective inputs, βv at position v has to
precede βw at position w. This irreflexive relation � decomposes as �0 + �1, where the
inputs of the poly-2-cells in the specified positions have either no (�0), or at least one (�1)
common poly-2-cell in the domain. It is immediately clear that v �0 w iff the non-empty
input of βv in position v is confined between two subsequent 1-cells in the input of βv in
position v, i.e.,

... αi αj
... αk αl

...

βv βw

or

... αi αj
... αk αl

...

βw βv

Otherwise the order of sequential composition would not be determined, or the first for-
bidden sub-configuration would occur. In particular, �0 is irreflexive and transitive, hence
there can be no �0-cycles.

On the other hand, if u �1 v, one of the following sub-configurations has to exist

αj αk αl

βu βv

0
2

1
3 or

αj αk αl

βu βv

3

1

0
2 or

αj αk αl

βv βu

3
1

2
0 or

αj αk αl

βv βu

2
0

1

3
(1-08)

cf., configurations (4.0) and (4.1) of Diagram (1-06). Obviously a cycle with respect to
�1 induces a cycle in the induced graph, thus violating (S0).
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Thus in any �-cycle an instance of u �1 v �0 w has to occur. Without loss of gener-
ality we may assume u < v. The first diagram in (1-08) then leads to three configurations

αi αj αk αl αm

βu βv βw

and

αi αj αk αl αm

βu βw βv

and

αi αj αk αl αm

βw βu βv

The forbidden sub-configurations for positions u and v, respectively, w imply that further
inputs of βu cannot originate right of αl, respectively, left of αi, which implies u �0 w. A
similar argument for the second diagram in (1-08) shows that in

αi αj αk αl αm

βu βv βw

and

αi αj αk αl αm

βu βw βv

and

αi αj αk αl αm

βw βu βv

further inputs of βu must originate neither left of αj, nor right of αm, which again implies
u �0 w. Hence any �-cycle reduces to a �0-cycle, which is impossible.

Condition (S0) not only prevents poly-2-cells αi in the domain and βj in the codomain
from being linked by more than one 1-cell, and circuit diagrams from having more than
one component (in particular, parallel 1-cells only make sense either as outputs or as
inputs of a poly-2-cell). It also prevents poly-2-cells with empty codomains or domains
from appearing among other poly-2-cells in Γ or ∆, respectively (cf. Remark 1.2(a)).

For planar polycategories there is no need to mention a permutation. Only (S0) has
to be required, the other conditions are satisfied automatically.

In case of multicategories, “composability” is determined by a match between the
first factor’s list of codomains and the domain of the second factor; it is a total and
cototal relation on (_)∗. Due to the problems with poly-2-cells having empty domain or
codomain, for planar polycategories the composability relation on (_)∗∗ can be neither
total nor cototal, but should be symmetric. Since different wires in circuit diagrams
can carry the same label, configurations (4.0) and (4.1) in Diagram (1-06) show that in
general polycategories two lists of poly-2-cells can be composed in more than one way.
Consequently, instead of a composability relation on (_)∗∗ we need a span that specifies
all possible compositions.

2. Spans and monads

Let X be a cartesian category, i.e., every cospan A f 	� C �� g B has a pullback. Choosing
a pullback for each cospan yields the 1-cell composition for a bicategory X-spn with the
same objects as X and spans A �� k0 K k1 	� B as 1-cells A �� 〈k0,K,k1〉 	� B. For brevity we
will set k := 〈k0, K, k1〉, or refer to 〈k0, k1〉 when the span’s center is understood. Given
another span A �� p 	� B with center P , a 2-cell k

u �� p is an X-morphism K
u 	� P satisfying
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u; pi = ki, i < 2. The composition A �� l;k 	� C of spans A �� k 	� B �� l 	� C with centers K and
L derives from the chosen pullback of K k1 	� B �� l0 L by extending its “legs” with k0

and l1, respectively. Since the choice of pullbacks need not be canonical in any sense, the
associativity of this composition and the properties of the evident identity 1-cells only
hold up to coherent isomorphism. Hence in general we obtain a bicategory rather than a
2-category.

It may aid the intuition to think of endo-spans C0
�� ∂ 	� C0 as “X-graphs” with C0 as

“object-of-nodes”. If equipped with a monad structure, i.e., 2-cells ∂; ∂
c �� ∂, serving as

associative binary “composition”, and C0
i �� ∂, providing identities for this composition,

we view them as “X-categories”.
Functors and natural transformations are called cartesian, if they preserve pullbacks,

respectively, have naturality squares that are pullbacks. Burroni [Bur71] realized that a
cartesian monad S = 〈S, µ, η〉 (all components cartesian) could be used to “skew” the
span-construction above by applying S to the spans’ sources (we are reserving the name
T for the “target-monad”, cf. below). This results in a bicategory S -spn with the same
objects as X, X-spans of the form AS �� k 	� B as 1-cells A ��� k 	� B (called S-spans) and
the evident 2-cells inherited from X-spn . The composition of A ��� k 	� B with B ��� l 	� C in
S -spn results from the composition in X-spn

AS �� Aµ ASS �� kS 	� BS �� l 	� C (2-00)

where we interpret AS �� Aµ ASS as trivial span with an X-identity as right component.
Identity 1-cells in S -spn now have the form A = 〈Aη,A, 1A〉. An alternative description
of this composition is presented in Diagram (2-01) below.

Aurelio Carboni and Peter Johnstone [CJ95] have identified monads S = 〈S, µ, η〉 over
set where µ and η are cartesian natural transformations and S preserves wide pullbacks
with “strongly regular theories”; these employ finitary operators and equations with the
same variables in the same order on both sides without repetition. In particular, every
corresponding monad is cartesian. However, the theory of commutative monoids is not
strongly regular and its monad is not cartesian, cf., e.g., [Lei98].

In view of Remark 1.2(e) this is bad news, since the free commutative monoid monad
ought to produce symmetric polycategories. Hence in Section 6 we investigate a weaker
conditions on a monad that still allows us to construct bicategories of modified spans.

For cartesian S , monoids in S -spn yield interesting generalizations of X-categories.
We recall a specific example that will help us later.

2.1. Example. [fc-multicategories] On the category [(• 	�	� •), set ] of directed graphs
the free category monad, which we also denote by (_)∗, is cartesian. Its (_)∗-categories
have been considered already by Burroni [Bur71] (who called them simply “multicate-
gories”). More recently, they were popularized under the name “fc-multicategories” by
Leinster [Lei99], [Lei02]. Given such a structure

(H
s 	�
t

	� O)∗ �� 〈d00,d01〉 (M
∂0 	�
∂1

	� V )
〈d10,d11〉 	� (H

s 	�
t

	� O)
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the elements of M , or multi-2-cells, have “vertical 1-cells” in V as “horizontal domains and
codomains”. Their “vertical domains and codomains” are typed paths of “horizontal 1-
cells” in H, respectively, single horizontal 1-cells, which in turn have sources and targets
in a set O of objects or 0-cells. The horizontal/vertical terminology is geared towards
pasting diagrams rather than generalized circuit diagrams, cf.,

A0

l

	

g0 	� A1
g1 	�

�� ��
��

...
gn−1 	� An

r


	
B0 h

	�

β

B1

vs.

g0 g1

...

gn−1

h

l r

A0

A1
An

B0 B1

β

where we have distinguished the vertical 1-cells l and r.
Notice that the vertical composition defined in a (_)∗-category automatically yields a

category structure on the span O �� d01 V d11 	� O.
In case of V = 1 = O we recover Lambek’s original multicategories, while just requiring

V = O yields typed multicategories, or “multi-bicategories”. In this case the only vertical
1-cells are identities and can be left off. On the other hand, replacing the free category
monad by the identity monad yields double-categories, which hence may be viewed as
“fc-monoidal categories”.

The spans in any category C can be organized into an fc-multicategory: objects are
those of C, horizontal 1-cells are the spans, while vertical 1-cells are C-morphisms. A
multi-2-cell

A0

l

	

G0

g0,0�� g0,1 	� A1 G1

g1,0�� g1,1 	�

�� ��
��

... Gn−1
gn−1,0�� gn−1,1 	� An

r


	
B0 H

h0

��
h1

	�

β

B1

is a functor from the category of cones for the dotted zig-zag above consisting of n − 1
cospans to the category of cones for the two solid cospans such that a cone and its image
agree on the components at G0 and at Gn−1. If C has pullbacks, up to isomorphism we can
choose a composite of the spans on top, say, A0

�� g 	� An with center G. Then β uniquely
corresponds to a C-morphism G b 	� H satisfying g0; l = b; h0 and g1; r = b; h1. In this case
the fc-multicategory of spans and C-morphisms is representable in the sense of Hermida
and may be identified with the double-category C-spn� with C-objects as objects, C-
spans as horizontal and C-morphisms as vertical 1-cells, and the 2-cells indicated above.
The subtle relationship between multicategories and monoidal categories, at least over
the base set , is analyzed in [Her00, Section 8].

Now we can interpret the composition (2-00) of 1-cells in S -spn as a multi-2-cell in
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X-spn� whose underlying X-morphism is an isomorphism

ASS

Aµ


	

�� kS 	�

�� ��
��

BS �� l 	� C

id

	

AS ��
k;l

	�

∼

C

(2-01)

The construction of S -categories is biased in favor of sources. To achieve a balance we
would like to apply either the same, or possibly a second cartesian monad T = 〈T, ν, ψ〉
on the target side. I.e., we wish to consider S -T -spans of the form AS �� k 	� BT as 1-cells
A ��� k � �B. If the composition is to proceed along the same lines as in the multi-case (think
of T as the identity monad), this raises the question of how to fill the gap in

ASS

Aµ


	

�� kS 	� BTS ?

�� ��
��

BST �� lT 	� CTT

Cν

	

AS ��
k;l

	�

∼

CT

(2-02)

Intuitively, we wish to compose “S-tuples” of “poly-2-cells” from A to B with “T -tuples” of
“poly-2-cells” from B to C. This ought to require a span between “S-tuples” of “T -tuples”
of codomains in B and “T -tuples” of “S-tuples” of domains in B, preferably natural in B,
that specifies all admissible composites. But which spans between TS and ST in [X,X]
will yield an essentially associative composition of S -T -spans with canonical identities?

3. Distributive laws

Natural candidates for completing the diagram in (2-02) are of course the B-components
of distributive laws TS

λ �� ST (or in the opposite direction) in the sense of Beck [Bec69],
i.e., of natural transformations compatible with both S and T , in the sense that

TSS
λS ��

Tµ

��

STS
Sλ �� SST

µT

��
TS

λ
�� ST

and
T

id ��

Tη

��

T

ηT

��
TS

λ
�� ST

(3-00)

TTS
Tλ ��

νS
��

TST
λT �� STT

Sν
��

TS
λ

�� ST

and
S

id ��

ψS

��

S

Sψ

��
TS

λ
�� ST

(3-01)

While over X = set distributive laws only realize functions, mapping the domain’s
codomain 1-cells to the codomain’s domain 1-cells (or vice versa), we expect them to
serve as building blocks for certain spans that specify the various ways in which the
domain’s codomain 1-cells and the codomain’s domain 1-cells can be connected.
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3.1. Definition. We call a distributive law TS
λ �� ST cartesian, if λ is a cartesian

natural transformation and if in addition the squares in (3-00) are pullbacks.

The apparent asymmetry of the latter notion, which puts no extra requirements on
the diagrams in (3-01), will be explained in Section 5.

3.2. Theorem. Given cartesian monads S = 〈S, µ, η〉 and T = 〈T, ν, ψ〉 on X, any
cartesian distributive law TS

λ �� ST induces a bicategory λ-spn with the same objects
as X, spans AS �� k 	� BT in X as 1-cells A ��� k � �B and the evident 2-cells inherited from
X-spn . The 1-cell composition A ��� k � �B ��� l � �C is realized as a 2-cell in X-spn� whose
center is an isomorphism

ASS

Aµ


	

�� kS 	� BTS
Bλ 	�

�� ��
��

BST �� lT 	� CTT

Cν

	

AS ��
k;l

	�

∼

CT

and the identity 1-cells are canonically given by the units η and ψ.

Proof. This will follow from Theorem 5.6, but a direct proof is quite easy.

3.3. Example. For T = IdX and λ = 1S we recover S -multicategories.

3.4. Remark. Besides strongly regular theories, endo-functors of the form (_)+C for
any set C (of nullary operations or constants), and of the form (_) × M for any monoid
M (of unary operations) induce cartesian monads on set [CJ95]. Already Beck observed
[Bec69] that canonical distributive laws

XT + C
id+Cϕ 	� XT + CT

[ιXT,ιCT ] 	� (X + C)T

respectively

XT × M
[ 〈id ,m〉:m∈M ] 	� (X × M)T

connect these types of monads with any other monad T = 〈T, ν, ϕ〉 on set . Here 〈id ,m〉
is the embedding of X as the m-th slice of X ×M and we regard XT ×M as the M -fold
coproduct of XT . Because set is extensive, for cartesian T the canonical transformation
T 2+ �� + T induced by the universal property of coproducts is cartesian. This renders
both these distributive laws cartesian. Hence we may repeatedly apply various instances of
the special monads above, which combine to a cartesian monad S , and obtain a canonical
cartesian distributive law TS �� ST .

3.5. Example. The free monoid monad 〈(_)∗, µ, η〉 on X = set is of course the
composite of the free semigroup monad H = 〈(_)+, µ+, η+〉 and the exception monad
E = 〈(_) + 1, µ1, η1〉, both cartesian. The cartesian distributive law EH

ζ �� HE un-
derlying this composition eliminates the new symbol of BE = B + 1 from all strings in
BEH = (B + 1)+.
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Unfortunately, even though ζ is a cartesian natural transformation, it is not a cartesian
distributive law: the compatibility diagram with η+ in (3-00) fails to be a pullback. Hence
Theorem 3.2 cannot be applied.

The construction of Remark 3.4 yields a cartesian distributive law HE
ι �� EH that

includes B∗ into (B + 1)+ by mapping the empty word of B to the singleton word over
B + 1 consisting of the new symbol, leaving all non-empty words unchanged.

With H = S and E = T the dual construction of Theorem 3.2 yields a bicategory
of spans, in which monads are close relatives of multicategories: for a set B of 1-cells the
poly-2-cells have non-empty inputs and at most one output. Binary composition is given
by cut along single 1-cells. Poly-2-cells with no output only compose with the empty
string of poly-2-cells. Alternatively, we can introduce a new 1-cell ε /∈ B and its identity-
2-cell 1ε, the only poly-2-cell with ε occurring in the input. For all other poly-2-cells the
inut belongs to B+, while the output belongs to B + {ε}.

4. Polycategories revisited, and some of their relatives

For planar polycategories strings of poly-2-cells admit at most one composition. The
corresponding composability relation is symmetric but not total. A distributive law on
the free monoid monad cannot capture this, we will need a proper relation between TS and
ST . As the example of general polycategories shows, even spans TS �� ω0

W
ω1 �� ST , or

TS �� ω �� ST for short, in the category [X,X] of endo-functors and natural transformations
may be necessary (cf., Theorem 1.5).

Before studying this in Section 5, let us see how some examples, in particular planar
polycategories, fit into the proposed framework. After replacing TS

λ �� ST in Theorem
3.2 by TS �� ω �� ST the proposed composition A ��� k � �B ��� l � �C depends on the pullbacks

Z
��

z0

���
��

� z1

���
��

��

X
��

x0

���
��

� x1

���
��

��
Y
��

y0

���
��

� y1

���
��

��

KS

k1S ���
��

��
BW

Bω0

���
��

� Bω1

���
��

��
LT

l0T���
��

�

BTS BST

(4-00)

If the original monads S and T happen to be composites, as in case of our motivating
example, we may try to build ω0 and ω1 from suitably well-behaved distributive laws.

4.1. Example. [Planar polycategories] Let both S and T be the free monoid monad
over set , induced by the non-cartesian distributive law EH

ζ �� HE of Example 3.5.
To find candidates for W , we list further distributive laws involving H and E: Besides

the the cartesian canonical inclusion HE
ι �� EH, cf. Example 3.5 and Remark 3.4, there

is a second distributive law EH
ξ �� HE. It maps non-empty strings over B+1 containing

the new symbol to the empty word in B∗. However, ξ fails to be cartesian.
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The involution EE
ϑ �� EE that interchanges the two new points of course is cartesian.

But there also is an involution HH
κ �� HH: each set BHH = B++ carries a natural

refinement ordering, as a disjoint union of atomic Boolean algebras, indexed by the non-
empty words over B: for n ≥ 1 and Γ = 〈bi : i < n〉 the corresponding Boolean algebra has
top element 〈Γ〉 = Γ(B+η+), bottom element 〈 〈bi〉 :i < n 〉 = Γ(Bη+)+ and as atoms those
words over B+ of length n− 1 that contain singletons with the exception of precisely one
doubleton 〈bkbk+1〉 for k < n− 1. Consequently, a complementation operation is available
on B++, which is the B-component of κ.

Jointly, ϑ and κ provide a complementation on W = H2E2 = (_)+++1+1 = (_)+∗+1:
think of BW as B++ extended with global complementary bottom and top elements that
may be identified with the empty word εB∗ ∈ B∗∗ and with the B∗η-image 〈εB〉 of the
empty word εB ∈ B∗. Let us interpret Diagram (4-00) when (HE)2 �� ω �� (HE)2 is given
by

(HE)2 �� HιE
H2E2 �� H2ϑ

W
κE2

�� H2E2 HιE �� (HE)2 (4-01)

The set X consists of those lists of poly-2-cells, whose list of codomains (in B∗∗) is either
empty, or consists of one empty list, or only contains one or more non-empty lists. The
same characterization applies to the list of domains of the lists of poly-2-cells in Y . The
composable pairs in Z ⊆ X × Y have codomain- and domain-lists, respectively, that
complement each other, like (f, g)(h)(k, l)(m) and (f)(g, h, k)(l,m) in case of

α0 α1 α2 α3

β0 β1 β2

f g h k l m

Non-singleton lists over B∗ containing the empty word do not have complements. Al-
though no longer total, in the planar case the composability relation is still single-valued.
Because of its symmetry, the inner endo-span on B∗∗ can be reversed without changing
the composition. Moreover, since ϑ and κ are involutions, the same result will be achieved
by using κϑ on one side of the span.

The reader may check the identities for this composition of modified spans and its
associativity. It will also follow from Proposition 5.8 below. Clearly the monoids in this
bicategory are precisely the planar polycategories of Section 1;

The following observation concerning κ was first made by Robin Cockett.

4.2. Proposition. The distributive law κ above has as algebras precisely the associative
double semigroups, i.e., sets X with two associative binary operations ◦ and � that are
associative with respect to the other, i.e.,

(a ◦ b) � c = a ◦ (b � c) and (a � b) ◦ c = a � (b ◦ c) for a, b, c ∈ X (4-02)

Proof. Any set of the form B++ has the desired algebraic structure: take for ◦ the
concatenation operation on B++, and for � the “De Morgan dual” of ◦, i.e., Γ�∆ := (Γκ◦
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∆κ)κ for Γ, ∆ ∈ B++. The associativity of � and the axioms (4-02) follow immediately,
once we observe

Γ � ∆ = 〈Γi : i < |Γ| − 1〉 ◦ 〈Γ|Γ|−1 · ∆0〉 ◦ 〈∆j : 0 < j < |∆|〉 (4-03)

where · denotes the concatenation on B+.
We wish to extend a function B

f 	� D into an associative double semigroup 〈D, ◦, �〉
to a homomorphism B++ f̄ 	� D. Recall the partial ordering on B++ described in Example
4.1 and the complementation κ. Since in B++ we have 〈(a)(b)〉κ = 〈(ab)〉, we can extend
f by mapping singleton words over B+, i.e., essentially words over B, to the �-product
of the f -images of its letters. Non-singleton words over B+ are then mapped to the ◦-
product of the �-products of its constituent B+-elements. This clearly is a homomorphism.
If B++ h 	� D is a homomorphic extension of f , in particular we have 〈(a)〉h = 〈(a)〉f̄ ,
a ∈ B. But 〈(a)〉 ◦ 〈(b)〉 = 〈(a)(b)〉 and 〈(a)〉 � 〈(b)〉 = 〈(ab)〉 in B++ force h to agree with
f̄ . This establishes (_)++ as left adjoint to the forgetful functor from the category ads
of associative double semigroups and homomorphisms to set .

For an Eilenberg-Moore algebra 〈B, β〉 define associative binary operations ◦ and � on
B by a ◦ b := 〈(a)(b)〉β and a � b := 〈(ab)〉β. These clearly obey axioms (4-02).

4.3. Remark. Axioms (4-02) closely resemble the structural morphisms for a linearly
distributive category, cf. Diagram (1-04), except that the latter in general are not isomor-
phisms. The name “linearly distributive category” was evidently chosen to distinguish the
linear logic approach to capturing the ∧∨-fragment of intuitionistic logic from Szabo’s
attempt employing distributive categories. However, the axioms (4-02) clearly express a
notion of associativity rather than distributivity, and the same applies to the structural
morphisms (1-04).

4.4. Remark. Since the complementation canonically extended from B++ to B++ +
1+1, one might attempt to extend the concatenation ◦ on B++ and its “De Morgan dual”
� in a similar fashion. Of course, ◦ is the restriction of the concatenation on B∗∗ with
the empty word εB∗ ∈ B∗∗ as neutral element. On the other hand Formula (4-03) is
meaningful on B∗+, which hence becomes a monoid with neutral element 〈εB〉. Clearly,
the axioms (4-02) extend to B∗+. Extending the monoid 〈B∗+, �, 〈εB〉〉 by a new neutral
element, namely εB∗ , somewhat surprisingly establishes B∗∗ as an “associative double
monoid” with εB∗ serving double duty as neutral element. In fact, there are no other
options. The requirement

εB∗ � ∆ = εB∗ � (εB∗ ◦ ∆) = (εB∗ � εB∗) ◦ ∆ (4-04)

for any ∆ ∈ B∗+ prevents the �-multiplication with εB∗ from shrinking any of its argu-
ments in length. In particular, 〈εB〉 cannot be neutral for � on all of B∗∗.

The assumption εB∗ �εB∗ := 〈εB〉 by (4-04) implies εB∗ �∆ = 〈εB〉◦∆ for all ∆ ∈ B∗∗.
However, for ∆ �= εB∗ we get ∆ = 〈εB〉 � ∆ = (εB∗ � εB∗) � ∆, and εB∗ � (εB∗ � ∆) =
〈εB, εB〉 ◦ ∆, violating the associativity of �.
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4.5. Example. [Polycategories] The composition for general polycategories, as de-
scribed in Section 1, cannot be captured by the complementation on H2E2, except for
the global (and the local) top and bottom elements.

For non-empty lists 〈Γi
αi �� ∆i : i < n 〉 and 〈Φj

βj �� Ψj : j < m 〉 of poly-2-cells
with non-empty outputs and inputs, respectively, the existence of a permutation from the
concatenation of the ∆i to the concatenation of the Φj subject to the conditions (S0)–
(S2) defines a span H2 �� υ0

U
υ1 �� H2. Combining this with the complementation of the

global top and bottom elements yields a span (HE)2 �� ω �� (HE)2 with center W := UE2

via
(HE)2 �� HιE

H2E2 �� Hϑ
UE2 υE2 � �H2E2 HιE �� (HE)2

While this clearly yields an associative composition with the desired units, we do not
know, whether this span can be expressed in terms of distributive laws.

4.6. Example. [fc-polycategories] Generalizing Example 2.1, over the category grph
of directed graphs we also may apply the free category monad to the codomain of spans.
The free category (H

s 	�
t

	� O)∗ can again be constructed in two stages: first we form the set
H+ of non-empty typed paths, and then we add empty paths εA

H for each object A ∈ O.
Again, H++ is closed under complementation and can be extended by 〈εA

H〉 and by its
complement εA

H∗ , A ∈ O. The rest of the construction proceeds as before.
Monads in this setting might be called “fc-polycategories” and will be studied else-

where. Their composition “by triangulation” is indicated by

Γ0 Γ1 Γ2

∆0 ∆1

u0;v0 u3;v2

α0 α1 α2

β0 β1

;�������� ;��������x0 x1 x2 x3

u0

u1 u2
u3

v0
v1

v2

The circled semi-colons indicate the vertical composition of vertical 1-cells. If V = O, all
vertical 1-cells are identities, ιA, and may be left off. We then obtain typed polycategories
(these must be planar, as explained in Section 1), also known as “poly-bicategories”, cf.
[CKS03]. Even if none of the α’s has an input and none of the β’s has an output, the
vertical 1-cells serve to “anchor” the resulting poly-2-cell.

Two horizontal 1-cells A f 	� B and B g 	� A are adjoint, if poly-2-cells τ (the unit)
and γ (the counit) exist such that

f

f

ιA ιB

τ 1f

1f γ

;�������� ;��������f g f

ιA
ιA

ιB

ιA
ιB

ιB

=

f

f

ιA ιB1f

and the other composition of γ with τ results in the identity for g.
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4.7. Example. [Ribbons] In (fc-) polycategories vertical wires (= horizontal 1-cells)
could be replaced by “ribbons” that may be twisted, indicated by an integer “winding
number”. Realizing this feature by restricting attention to (graphs with edge) sets of
the form B ×ZZ would equip the poly-2-cells with an integer component without natural
interpretation. Instead, the free semigroup functor (_)+ should be replaced by the functor
((_)×ZZ)+, with ZZ serving as a monoid of unary operations on the horizontal 1-cells, cf.
Remark 3.4. The unit maps B into (B×{0})+. Similarly, we freely equip the the graph’s
edges with the monoid ZZ of unary operations before applying the free category functor.

4.8. Example. [Braidings] Non-empty words over a set may be paired with an element
of the braid group of the word’s length. This generalization of the free semigroup functor
yields a cartesian monad that may be composed with the exception monad E. Sequences
of poly-2-cells with an outer braiding now can be composed, if the sequences of codomains
and domains after application of the inner and outer braidings are complements. Notice
that if braidings are replaced by permutations, one still does not recover Szabo’s original
polycategories.

4.9. Example. [Virtual 1-cells] From Remark 3.4 recall the cartesian monad on set
induced by (_)+2, where 2 = {0, 1}. Call this monad S . Its Eilenberg-Moore algebras are
bi-pointed sets (with two distinguished constants), and the homomorphisms preserving
these constants are bi-strict functions. The category setS clearly is cartesian.

Beck’s canonical cartesian distributive law from S to the free semigroup monad H
(cf. Remark 3.4) induces an extension H ′ of H to setS [Bec69]. The distinguished points
of (X + 2)+ are the singleton words consisting of the distinguished elements of X + 2. In
fact, H ′ is again cartesian and admits a complementation κ′. Now Theorem 3.2 yields a
bicategory of spans in setS .

Those spans (A + 2)+ �� k0 K + 2 k1 	� (B + 2)+, where poly-2-cells in K only have
inputs from A + {0} and outputs from B + {1}, form a sub-bicategory. Its monads are
almost planar polycategories: The only compositions along the “virtual” 1-cells 0 and 1
involve an identity-2-cell in the other factor. The “virtual” 1-cells represent empty sublists
at specific positions of the input or output, or “locally neutral” elements for partial tensor
products ⊗ and ⊕. To obtain “globally neutral” elements we need to identify all poly-2-
cells that only differ in their “virtual” inputs or outputs.

5. Replacing distributive laws by appropriate spans

We now return to our question at the end of Section 2: which spans TS �� ω �� ST in [X,X]
allow defining an essentially associative composition on X-spans A ��� k � �B ��� l � �C via 2-cells
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in X-spn� with an isomorphism in the center

ASS

Aµ


	

�� kS 	� BTS �� Bω 	�

�� ��
��

BST �� lT 	� CTT

Cν

	

AS ��
k;l

	�

∼

CT

(5-00)

such that the units of S and T yield identity 1-cells?
The latter requirement implies that the units η and ψ occur as projections in the

following wide pullback in [X,X]

X
��

��
��

��
��

��

�� ��
����
��η

��

ψ

��

S̄
��

ω̄0�� ��
����
�� ψ̄

��
��

��
��

��
T̄
��

η̄

�� ��
����
��

ω̄1 ��
��

��
��

��

S

ψS ��
��

��
��

��
W

ω0

�� ��
����
�� ω1

��
��

��
��

��
T

ηT�� ��
����
��

TS ST

For simplicity, and in view of the direct proof of Theorem 3.2, it seems reasonable to
require

(I0) The pullbacks of ω0 along ψS and of ω1 along ηT are isomorphisms.

Intuitively, every “S-tuple” of “identity-2-cells” composes (from the top) with some “T -
tuple” of “poly-2-cells”, and dually for “T -tuples” of “identity-2-cells”. Since under the
assumption of (I0) the span S �� η

X
ψ �� T of units arises as a pullback of the cospan

S
ψ̄ �� W �� η̄

T , an “S-tuple” of “identity-2-cells” and a “T -tuple” of “identity-2-cells” only
compose, if both “tuples” are “singletons”. This internalizes the fact that for (planar) poly-
categories á priori there is no horizontal composition of identity-2-cells, or equivalently,
1-cells.

Since η is cartesian, T̄ = T implies that η̄; ω0 and Tη have the same pullback along
ψS. While this only forces η̄; ω0 to agree with Tη on T -units, we wish to require more

(I1) η̄; ω0 = Tη and ψ̄; ω1 = Sψ

This expresses the idea that the only “S-tuples” of “poly-2-cells” composable with “T -
tuples” of “identity-2-cells” are “singleton S-tuples”, and its dual.

If ω is to be viewed as a generalized distributive law, it ought to satisfy appropriate
generalizations of axioms (3-00) and (3-01). While replacing λ in those diagrams by the
span ω does not produce well-formed diagrams in [X,X], viewed in the double-category
[X,X]-spn� of spans and morphisms in [X,X], they could serve as carriers for 2-cells (cf.
Example 2.1).
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5.1. Definition. Given two monads S = 〈S, µ, η〉 and T = 〈T, ν, ψ〉 on a category X, a
generalized distributive law 〈ω, µ̄, ν̄, η̄, ψ̄〉 between S and T consists of a span TS �� ω �� ST
in [X,X] together with four 2-cells in the double-category [X,X]-spn�

TSS

Tµ

��

�� ωS ��

�� ����

STS �� Sω �� SST

µT

��
TS ��

ω
��

µ̄

ST

,
TTS

νS
��

�� Tω ��

�� ����

TST �� ωT �� STT

Sν
��

TS ��
ω

��

ν̄

ST

(5-01)

T

Tη

��

�� T ��

�� ����

T

ηT

��
TS ��

ω
��

η̄

ST

,
S

ψS
��

�� S ��

�� ����

S

Sψ
��

TS ��
ω

��

ψ̄

ST

(5-02)

(Here the centers need not be isomorphisms.)

In our specific situation the 2-cells η̄ and ψ̄ amount to the existence of natural trans-
formations T

η̄ �� W and S
ψ̄ �� W such that in [X,X] we have

T

Tη

��

T
id�� id ��

η̄

��

T

ηT

��
TS Wω0

��
ω1

�� ST

and
S

ψS
��

S
id�� id ��

ψ̄
��

S

Sψ
��

TS Wω0

��
ω1

�� ST

The left, respectively right squares amount to condition (I1) above. Asking, in addition,
for η̄ to be a pullback of ηT and for ψ̄ to be a pullback of ψS along ω1 and ω0, respectively,
we recover precisely condition (I0).

5.2. Definition. If C is cartesian, we call a 2-cell in the double-category C-spn� of
spans and C-morphisms right-sided (left-sided), if its right (left) underlying C-square is a
pullback.

5.3. Proposition. If TS �� ω �� ST admits right- and left-sided 2-cells η̄ and ψ̄, respec-
tively, as in Diagram (5-02), the composition defined by Diagram (4-00) has the canonical
identities.

An analogous result for the associativity also requires ω to be cartesian in the sense
that both components have this property.

5.4. Proposition. If TS �� ω �� ST is cartesian and admits right- and left-sided 2-cells µ̄
and ν̄, respectively, as in Diagram (5-01), the composition defined by (4-00) is essentially
associative.
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Proof. Let WS �� ϕ �� SW with center F and TW �� γ �� WT with center G be the point-
wise pullbacks of 〈ω1S, Sω0〉 and 〈Tω1, ω0T 〉, respectively.

Consider S -T -spans A ��� k � �B, B ��� l � �C and C ��� m � �D and denote the pullbacks oc-
curring in the composition of l with m according to Diagram (4-00) by X ′, Y ′ and Z ′,
respectively. We now wish to compare the following limits of the dotted diagrams:

KS
k1S


	
(0)

X��

x0��

x1

	

R��

r0��

r1

	

Q��

q0��

q1


	

q
�

�
�

�

���
�

�
�BTS BW

Bω0

��

Bω1


	

BF��

Bµ̄��

Bϕ1
	

P��

f��

p1

	

BSW
BSω1 
	

(2)

(4)

LW��
Lω1
	

l0W�� P ′
��

p′0��

p′1
	�
�

(6)

BST BSST
BµT

�� LST
l0ST

�� X ′T
x′
0T

�� Z ′T
z′0T

��

Q′
��

q′0


	

q′1 	�

q′
	

	
	

��	
	

	

R′
��

u′
0 
	

r′1 	� Y ′
��

y′
0 
	

y′
1 	� MT

m0T

	

(1)

P ′
��

p′0 
	

g 	� CG
��

Cγ0 
	

Cν̄ 	� CW

Cω0


	

Cω1

	� CST

P
��

p0

	�
�

p1 	�

(7)

LW
Lω0 
	

l1W 	� CTW
CTω0
	

(5)

(3)

ZS
z1S

	� Y S
y1S

	� LTS
l1TS

	� CTTS
CνS

	� CTS

(5-03)

Composing k and l, respectively l and m according to Diagram (4-00) yield the pullbacks
(0) and (1). Since µ̄ is right-sided and ν̄ is left-sided, (2) and (3) are pullbacks, while
the cartesian transformations ω1 and ω0 are responsible for the pullbacks (4) and (5). To
account for (7), consider the cube

BF
Bϕ1 	�

Bϕ0


	

BSW

BSω0


	

P
��

f���

�����

p1

	�

p0


	

LW

l0W���

�����

Lω0


	

BWS
Bω1S 	� BSTS

Y S

y0S���

�����

y1S
	� LTS

l0TS���

�����

Since S is cartesian, in view of (4-00) the bottom is a pullback. The naturality of ω0

causes the right face to commute, while the rear face commutes by definition of F . This
induces a unique morphism P p0 	� Y S rendering the left face and the front commutative.
Since the other faces are actually pullbacks, so is the front face. Hence the pullback at Q
factors through (7). An analogous argument applies to (6) and the pullback at Q′.
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Since µ and S are cartesian, the pullback of k1S along f ; B(µ̄; ω0) coincides with the
pullback of z1S along p0

KSS��
k1SS


	

Kµ

��









XS��

x0S��

x1S

	

ZS��

z0S��

z1S

	

KS
k1S


	

BTSS

BTµ��









BWS

Bω0S
�� Y S

y0S�� R��

r2

�������������

r1

	

BTS BW
Bω0

�� BF
Bϕ0

�����������

Bϕ
�� P

p0
�������������

f
��

It is now easy to see that

Q q1 	� Z ′T z′1T 	� Y ′T y′
1T 	� MTT Mν 	� MT

Q
q0 	� R

r2 	� ZS

Q q 	� P ′ g 	� CG Cν̄ 	� CW

constitute a cone for the second diagram in (5-03). Similarly, we get a cone for the first
diagram with vertex Q′, which implies that Q′ is isomorphic to Q.

5.5. Definition. We call a generalized distributive law 〈ω, µ̄, ν̄, η̄, ψ̄〉 between S and
T cartesian, if µ̄ and η̄ are right-sided, and ν̄ and ψ̄ are left-sided.

5.6. Theorem. Given cartesian monads S and T on a category X with pullbacks,
any cartesian span TS �� ω �� ST induces a bicategory ω-spn with the same objects as X,
spans AS �� k 	� BT in X as 1-cells A ��� k � �B, and the evident 2-cells. The identity-1-cells
are given by the units of S and T , while the composition of 1-cells A ��� k � �B ��� l � �C is
defined by means of 2-cells (5-00) in X-spn� with an isomorphism in the center.

If we interpret a natural transformation TS
λ �� ST as a span with an identity as left

component, the existence of 2-cells µ̄ and η̄ as well as ν̄ and ψ̄ is equivalent to λ being a
distributive law. ν̄ and ψ̄ will be trivially left-sided, while the right-sidedness of µ̄ and η̄
corresponds to the squares in Diagram (3-00) being pullbacks. Hence the notion of being
cartesian coincides for distributive laws and generalized distributive laws with trivial left
component, and we obtain Theorem 3.2 as a direct corollary of Theorem 5.6.

We now analyze the case that ω0 and ω1 are built from cartesian distributive laws, as
in our motivating example. We start with four cartesian monads Si = 〈Si, µi, ηi〉 and Ti =
〈Ti, νi, ϕi〉, i < 2, and two cartesian distributive laws S1S0

σ �� S0S1 and T1T0
τ �� T0T1.

These induce composite cartesian monads S and T in the usual fashion

S = 〈S0S1, S0σS1; µ0µ1, η0; S0η1〉 and T = 〈T0T1, T0τT1; ν0ν1, ϕ0; Tϕ1〉
Candidates for the center W of ω are shuffles of S0S1 and T0T1, depending on which
cartesian distributive laws are available.

To account for Example 4.1, we consider four cartesian distributive laws:

T1S1
�� ϑ

S1T1

T1S0
�� α

S0T1

and
T0S0

κ �� S0T0

T0S1
β �� S1T0

(5-04)
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With W := T0ST1 these induce a span TS �� ω �� ST by

TS �� T0αS1
T0S0T1S1

�� T0S0ϑ
W

κS1T1 �� S0T0S1T1
S0βT1 �� ST (5-05)

Notice that this construction is less symmetric than may have been suggested by Diagram
(4-01) in Example 4.1. (With other distributive laws, e.g., the shuffle S0TS1 could have
been used for W instead.)

The units η and ψ are easy to handle. A simple diagram chase shows:

5.7. Lemma. If the compatibility diagrams for κ with η0 and for β with η1 are pullbacks,
a right-sided 2-cell η̄ exists as in Diagram (5-02). If the compatibility diagrams if for both
ϑ and α with ψ1 are pullbacks, then a left-sided 2-cell ψ̄ exists.

To establish associativity is somewhat more complicated. First observe that because
of ω1S = (κS1; S0β)T1S and Sω0 = ST0(S0ϑ; αS1) the pullback WS �� ϕ �� SW with center
F needed for the span-composition ωS; Sω is trivially given by the span

WS ��� T0S(S0ϑ;αS1) T0S
2T1

(κS1;S0β)ST1 � �SW

We wish to establish the following [X,X]-diagrams as the left and right components of the
desired right-sided 2-cell µ̄ in [X,X]-spn�

TS2

TS0σS1

��

T0S0T1S1S��

T0S0T1σS1

��

T0αS1S�� WS
T0S0ϑS�� T0SS0T1S1

T0S0σT1S1

��

T0SαS1��

(2)

T0S
2T1��

T0S0σS1T1

��

T0SS0ϑ��

TS2
0S

2
1

Tµ0µ1

��

T0S0T1SS1
T
0 α

S
S

1

�� T0S
2
0T1S

2
1

T0µ0T1µ1

��

T
0 S

0 α
S
21

��

(1)

T0S0ST1S1

T
0 S

20 ϑ
S

1

�� T0S
2
0S

2
1T1

T0µ0µ1T1

��

T
0 S

0 S
ϑ

��

(0)

TS T0S0T1S1T0αS1

�� T0ST1T0S0ϑ
��

T0S
2T1
��

T0S0σS1T1

��

κS1ST1 �� S0T0S1ST1

S0T0σS1T1

��

S0βST1 ��

(5)

SW
SκS1T1 �� SS0T0S1T1

��

S0σT0S1T1

��

SS0βT1 �� S2T

S0σS1T

��
T0S

2
0S

2
1T1

T0µ0µ1T1

��

κ
S 0

S
2

1
T 1

��

(3)

S0T0SS1T1

S 0
κ
S

2
1
T 1

�� S2
0T0S

2
1T1

µ0T0µ1T1

��

S
2

0
β
S 1

T 1

��

(4)

S0ST0S1T1

S 0
S
β
S 1

T 1

�� S2
0S

2
1T

µ0µ1T

��
T0ST1 κS1T1

�� S0T0S1T1 S0βT1

�� ST

The marked pullbacks trivially result from two non-interfering natural transformations.
Parts (0) and (1) as well as (3) and (4) commute because of the axioms for distributive
laws. The latter two can easily be shown to be pullbacks, provided the compatibility
squares of κ and β with the multiplications µ0 and µ1, respectively, are pullbacks. The
remaining parts (2) and (5) can be addressed simultaneously by requiring
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(σ) T0σT1 provides a right-sided 2-cell in [X,X]-spn�

TS1S0

Tσ
��

�� ����

T0S1S0T1
� �〈T0(S1α;ϑS0),id〉��� ��� 〈id ,(βS0;S1κ)T1〉 � � S1S0T

σT
��

TS
���

ω
� �

T0σT1

ST

which in [X,X] amounts to

TS1S0

Tσ
��

T0S1T1S0
T0ϑS0�� T0S1S0T1

��
T0S1α��

T0σT1

��

βS0T1 �� S1T0S0T1
S1κT1 �� S1S0T

σT
��

TS Wω0

��
ω1

�� ST

(5-06)

Unfortunately, the left-sided 2-cell ν̄ cannot be handled dually, because our set-up (5-05)
lacks symmetry. Consider first

T 2S

T0τT1S

��

TT0S0T1S1��

TT0αS1��

T0τS0T1S1

��

TW��

TT0S0ϑ��

T 2
0 T 2

1 S

ν0ν1S

��

T0TS0T1S1

T
20 T

1 α
S

1
��

T0TST1

��
T0τST1

�� T 2
0 αS1T1

�������
�������

T 2
0 T1S0ϑ

�� 

T 2
0 S0T

2
1 S1

ν0S0ν1S1

��

T 2
0 αT1S1

�� �������
������� ��

T 2
0 S0T1ϑ

 
T 2

0 S0T1S1T1
�� T0WT1

ν0Sν1

��

T
20 S

0 ϑ
T
1

����

(0)

TS T0S0T1S1T0αS1

��

(1)

W
T0S0ϑ

��

WT
��

κS1T1T �� S0T0S1T1T
��

S0T0S1τT1

��

S0βT1T �� ST 2

ST0τT1

��
T0WT1

ν0Sν1

��

T 0
κ
S 1

T
2

1

��

(2)

T0S0T0S1T
2
1 �

�
T0STT1

��
T0SτT1

��T0S0βT 2
1

 κS1T0S1T1

����������
��������

S0T
2
0 S1T

2
1

S0ν0S1ν1

��

S0T0βT 2
1

�� ��
κT0S1T 2

1

������
������ S0T0S1TT1

S 0
β
T
T 1 �� ST 2

0 T 2
1

Sν0ν1

��
W

κS1T1

�� S0T0S1T1 T0βS1

��

(3)

ST

Again we have marked the trivial pullbacks. If the compatibility diagrams of both ϑ and
α with the multiplication ν1 are pullbacks, parts (0) and (1) can be shown to be pullbacks
as well. The axioms for distributive laws imply that parts (2) and (3) commute. To obtain
a left-sided 2-cell ν̄ we need to fill the obvious gap. This can be done by requiring
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(τ ) in [X,X]-spn� there exists a left-sided 2-cell

T1T0S

τS
��

��� 〈id ,T1(κS1;S0β)〉 � �

�� ����

T1ST0
��� 〈(S0ϑ;αS1)T0,id〉 � � ST1T0

σT
��

TS
���

ω
� �

τ̄

ST

which in [X,X] amounts to the existence of a natural transformation τ̄ from the
pullback H to W such that

T1ST0

T1T0S

T1(κS1;S0β) 	������� ������

τS
��

ST1T0

(S0ϑ;αS1)T0�� ������
������

Sτ
��H

��

��

χ0�� ��������
��������

τ̄
��

χ1 	���������
��������

TS ST

Wω0

�� ���������
��������� ω1

	����������
���������

(5-07)

The two lower squares in (5-07), enclosed by T0 and T1, fill the gap and ν̄ = T0τ̄T1; ν0Sν1

yields the desired left-handed 2-cell.
Together with Lemma 5.7 and as a consequence of Theorem 5.6 we obtain

5.8. Proposition. If ϑ, α, κ and β as in (5-04) are cartesian distributive laws
satisfying (σ) and (τ ), the objects of X, spans of the form AS

k 	� BT as 1-cells from A
to B with the composition according to (5-00) and (5-05) and the evident 2-cells form a
bicategory.

The hypotheses are easily verified for the relevant distributive laws on the free semi-
group monad and the exception monad of Example 4.1. Hence that construction indeed
yields a bicategory with planar polycategories as monads.

6. Weakly cartesian monads

Our construction above is based on the bicategory X-spn . Since certain interesting mon-
ads fail to be cartesian, foremost the free commutative monoid monad, we wish to suitably
modify X-spn before performing the remaining steps of the construction. This is intended
to force pullbacks wherever the monad-functors and their natural transformations as well
as ω fail to produce them. In other words, we wish to invert the span-morphisms induced
by the pullbacks for the cospans in certain commutative squares. This has the flavor
of forming a “bicategory of fractions”, an operation where attention has to be paid to
potential size problems. However, if the span-morphisms to be inverted happen to be
retractions, such size problems can be avoided.
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6.1. Definition. A span A �� k 	� B a category X with pullbacks is called a weak pullback
of a cospan A 	� f �� B, if the uniquely determined span-morphism from k into the pullback
of f is a retraction.

The notions of cartesian functor/natural transformation/monad, of right/left-sided
2-cell in [X,X]-spn� and of cartesian span in [X,X] may all be weakened by replacing
pullbacks by weak pullbacks in the respective definitions.

Since functors preserve retractions, we see that cartesian functors/monads are weakly
cartesian. An easy exercise establishes

6.2. Proposition. The free commutative monoid monad is weakly cartesian.

6.3. Definition. For a bicategory B and a class R of 2-cells that are retractions, let
∼R be the least congruence on the class of 2-cells with respect to the composition functors
[X,Y ] × [Y, Z] 	� [X,Z] such that

• ∼R contains all parallel pairs 〈ρ; σ, 1〉, where ρ ∈ R and σ; ρ = 1;

• on each hom-category [X,Y ] of B the relation ∼R restricts to a congruence relation
with respect to the composition of 2-cells.

The quotient bicategory B/∼R is obtained by quotienting all hom-categories [X,Y ] by the
appropriate restriction of ∼R.

The objects and 1-cells of B/∼R coincide with those of B, and the canonical morphism
of bicategories from B to B/∼R maps the 2-cells in R to isomorphisms.

6.4. Theorem. For weakly cartesian monads S = 〈S, µ, η〉 and T = 〈T, ν, ψ〉 on X,
any weakly cartesian span TS �� ω �� ST induces a bicategory, again denoted by ω-spn , with
the same objects as X, spans AS �� k 	� BT in X as 1-cells A ��� k � �B and the evident 2-cells
inherited from X-span/∼R, where R is the class of retractions determined by all

(0) S-images, respectively, T -images of pullbacks of the form

KS

k1S

	

Z��
��


	
BTS BW

Bω0

�� Yy0

��
and

Z ′
��


	

	� LT

l0T


	
X ′

x′
1

	� BW
Bω1

	� BST

(1) naturality squares of the form

BS

BSψ


	

L
l0��

Lψ


	
BST LT

l0T
��

and
K

Kη


	

k1 	� BT

BTη


	
KS

k1S
	� BTS

for the weakly cartesian natural transformations ψ and η;
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(2) naturality squares of the form

BSTT

BSν

	

LTT
l0TT��

Lν

	

BST LT
l0T

��

and
KSS

Kµ


	

k1SS 	� BTSS

BTµ


	
KS

k1S
	� BTS

for the weakly cartesian natural transformations ν and µ;

(3) naturality squares for the weakly cartesian natural transformations ω0, ω1;

(4) weak pullbacks resulting from the weakly right-sided 2-cells η̄ and µ̄;

(5) weak pullbacks resulting from the weakly left-sided 2-cells ψ̄ and ν̄.

Composition of 1-cells A ��� k � �B ��� l � �C is defined by means of 2-cells of the form (5-00) in
X-spn�/∼R with an isomorphism in the center, and the identity-1-cells are given by the
units of S and T .

Consider the free commutative monoid functor on set . Since this happens to be part of
a weakly cartesian monad, we expect to obtain “symmetric polycategories” as monoids in
bicategory of the type described in Theorem 6.4, provided a weakly cartesian counterpart
for the span ω of Example 4.1 can be found.

The free symmetric monoid over B consists of “unordered lists”, also known as “bags”,
or “multi-sets”, or “subsets with finite repetition” and can be identified with functions
B f 	� IN where IN \ {0} has a finite pre-image. Addition of bags operates by adding
functions and has the constant zero function as neutral element.

Concerning the ways of composing two bags of poly-2-cells with bags of suitable sets as
domains and codomains, the only condition to carry over from Section 1 ought to be simple
connectedness. Hence drawing such compositions may involve arbitrarily intersecting 1-
cells. However, due to the nature of bags, these can also be disentangled: since the
diagram is simply connected, there has to be at least one poly-2-cell linked by a single 1-
cell to the rest. Removing this yields another legitimate composition diagram (where one
poly-2-cell has one input or output less than before). In this fashion we can successively
remove all but two poly-2-cells and then re-attach them in the reversed order, but in
planar fashion.

6.5. Theorem. Let U be the bag-monad, and let HE
ψ �� U be the natural transfor-

mation that turns words into bags by forgetting the order. Extending (HE)2 �� ω �� (HE)2 of
Example 4.1 by ψ2 on both sides produces a weakly cartesian span U2 �� ω′

�� U2 in [set , set ],
such that symmetric polycategories are the monads in ω′-spn .
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7. Concluding remarks

For weakly cartesian monads S and T , we managed to interpret all S -T -spans as 1-cells of
a bicategory ω-spn , whenever a weakly cartesian generalized distributive law TS �� ω �� ST
exists. In such an environment several types of monoids may be studied. Endo-1-cells
A ��� k � �A, or “S -T -graphs”, can be specialized to

ω-categories, if AS K
k0�� k1 	� AT is a monoid;

ω-orders, if AS K
k0�� k1 	� AT is a monoid and monosource;

ω-EM-bialgebras, if AS K
k0�� k1 	� AT is a monoid with k0 = idAS;

S -T -bialgebras, if AS K
k0�� k1 	� AT satisfies k0 = idAS.

(7-00)

Of course, some such monoids may exist even if the bicategory ω-spn cannot be defined.

7.1. Example. If T = X and ω = idS , then for spans of the form AS �� idAS AS ξ 	� A
the question, whether they carry a monoid structure, does not depend on S being carte-
sian. Due to the left leg of the span being an identity, the only possibly monoid structure
must be given by Aµ and Aη. The conditions for the span’s right leg then are precisely
the EM-algebra axioms for S . The unit and associativity requirements for the relevant
span compositions directly boil down to the monad axioms.

Unless S is cartesian, we cannot build a bicategory of all X-S -spans (note the reversal
of S and X). However, we may always build a bicategory of X-S -spans of the form
A �� idA A f 	� BS: in fact this is just the Kleisli category for S equipped with 2-cells
via commutative triangles. Since the left legs of these spans are identities, the notions of
ωop-EM-bialgebras and of X-S -bialgebras coincide; they are determined precisely by the
monad units A Aη 	� AS.

We hope that our new description of polycategories, especially their planar and sym-
metric variants, in simple categorical terms will allow them to shed their somewhat tainted
image and become the subject of further categorical investigation. Some open questions,
partly arising from our analysis above, conclude this section.

- Which notions of morphisms suit the structures outlined (7-00), especially ω-cate-
gories? Besides the obvious “ω-functors” and their “ω-transformations”, other pos-
sibilities should not be discounted. In particular, how do the “poly-functors” and
“poly-modules” of [CKS03] fit into the picture?

- Ordinary distributive laws between S and T facilitate a composition of the monads,
or equivalently, a lifting of T to XS . What can be said about generalized distributive
laws (Definition 5.1) in this regard?

- The diagrams in (5-06) raise a general question concerning distributive laws. Can-
celing T0 on the left, respectively T1 on the right, results in diagrams describing two
different ways of reversing the order of three monads by applying three distributive
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laws. In general, AB
α �� BA, AC

β �� CA and BC
γ �� CB yield αC; Bβ; γA and

Aγ; βB; Cα from ABC to CBA. Although there exists a composite monad with car-
rier CBA, neither of these reversals is used in constructing its multiplication. That
results from BACB

BβB �� BCAB
γα �� CBBA. Hence it is not clear, whether or

not αC; Bβ; γA and Aγ; βB; Cα always agree.

- Does it make sense to consider “composites” of A ��� k � �B and B ��� l � �C where the
center of the 2-cell (5-00) need not be an isomorphism?

- In the quest for “categories without identities”, also called “taxonomies”, a weakening
of the notion of monad was proposed in [Kos97]: an interpolad 〈a, α〉 on A is an
endo-1-cell A a 	� A equipped with a multiplication aa

α �� a that is a coequalizer
of aα and αa (and hence in particular associative).

For interpolads S and T a cartesian span TS �� ω �� ST will still give rise to a compo-
sition of S -T -spans, but the lack of identities for S and T will in general prevent
this multiplication from having identities. This raises the question, what a mean-
ingful notion of “bicategory without identity 1-cells” or “bitaxonomy” could be, and
what conditions on ω are necessary to produce such a structure. In a next step, one
might even consider interpolads in a bitaxonomy.
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