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ADJUNCTION MODELS FOR CALL-BY-PUSH-VALUE WITH
STACKS

PAUL BLAIN LEVY

Abstract. Call-by-push-value is a ”semantic machine code”, providing a set of simple
primitives from which both the call-by-value and call-by-name paradigms are built. We
present its operational semantics as a stack machine, suggesting a term judgement of
stacks. We then see that CBPV, incorporating these stack terms, has a simple categorical
semantics based on an adjunction between values and stacks. There are no coherence
requirements.

We describe this semantics incrementally. First, we introduce locally indexed categories
and the opGrothendieck construction, and use these to give the basic structure for
interpreting the three judgements: values, stacks and computations. Then we look at
the universal property required to interpret each type constructor. We define a model to
be a strong adjunction with countable coproducts, countable products and exponentials.

We see a wide range of instances of this structure: we give examples for divergence,
storage, erratic choice, continuations, possible worlds and games (with or without a
bracketing condition), in each case resolving the strong monad from the literature into
a strong adjunction. And we give ways of constructing models from other models.

Finally, we see that call-by-value and call-by-name are interpreted within the Kleisli and
co-Kleisli parts, respectively, of a call-by-push-value adjunction.

1. Introduction

1.1. Background. Moggi [Mog91] introduced the use of a strong monad T on a
cartesian category C to model call-by-value languages. As noted by [Fil96] and others, this
structure can also be used to interpret call-by-name, where a type denotes a T -algebra.

Based on these ideas, the call-by-push-value (CBPV) paradigm was introduced [Lev99,
Lev], subsuming call-by-value and call-by-name. Two key type constructors in CBPV are
U and F , and their composite UF corresponds to Moggi’s type constructor T . This
immediately prompts the question: surely CBPV decomposes Moggi’s monad into an
adjunction? Now, this is certainly the case for all of the concrete models studied. For
example the storage model decomposes Moggi’s S → (S × −) monad into S → − and

An extended abstract of this paper was presented at the 9th Conference on Category Theory and
Computer Science, Ottawa, 2002 [Lev03].
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S × −, whilst the continuations model decomposes Moggi’s (− → R) → R monad into
− → R and − → R.

However, the syntax of CBPV does not confirm this analysis. CBPV has two judge-
ments, values and computations, and the former give us a value category C, but the
other category required for an adjunction is absent. Thus, we are left with a “not-quite-
adjunction” which can be formulated in several ways, none of them elegant [Lev01].

But fortunately, recent work on CK-machine semantics (a form of operational seman-
tics [FF86]) for CBPV has brought to light a new judgement: that of stacks. (Inde-
pendently, a stack judgement with some similar rules was introduced in [CH00], in the
setting of call-by-name and call-by-value with control effects.) The categorical semantics
of CBPV+stacks is precisely the adjunction structure noticed in each of the concrete
models. The purpose of this paper is to present this adjunction semantics.

We will describe numerous such adjunctions, including models for divergence, storage,
erratic choice, continuations, possible worlds in the style of [Lev02] and pointer games in
the style of [AHM98, HO00]; as well as general ways of building these adjunctions. We do
not motivate them individually in this paper, because they are given merely as examples
of the categorical structure.

In the case of pointer games, it is noteworthy that our categorical structure includes
not only unbracketed models [Lai97]—which are continuation models after all [Lai98]—but
also well-bracketed models, which are not. (See also Remark 6.8.)

As usual in categorical semantics, we show a theory/model equivalence. In order to
achieve this, we need to introduce additional constructs called complex values and complex
stacks. Fortunately, however, these constructs can always be removed from a computation.

Finally, we look at some related topics, including CBV and CBN.

1.2. Adjunctions: A Discussion. Let C and D be categories; we will underline
objects of D. It is well known that the notion of adjunction from C to D has numerous
equivalent definitions. One of these requires functors U and F and an isomorphism

C(X,UY ) ∼= D(FX, Y ) natural in X and Y (1)

Alternatively F can be specified on objects only and naturality in X removed. (This is
equivalent to the first definition by the parametrized representability theorem.) But can
we give a definition where both U and F are specified on objects only? Here is one way.

Let us say, in an adjunction, that an oblique morphism from X to Y is a C-morphism
from X to UY or a D-morphism from FX to Y —it hardly matters which, since they
correspond. Clearly an oblique morphism can be composed with a C-morphism on the
left, or with a D-morphism on the right; it straddles the two categories, so to speak. Let
us write O(X,Y ) for the oblique morphisms from X to Y . Now an adjunction from C to
D can be specified by a functor O : Cop ×D → Set (also called a left C-, right D-bimodule)
and isomorphisms

C(X,UY ) ∼= O(X,Y ) natural in X (2)

O(X,Y ) ∼= D(FX, Y ) natural in Y (3)
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Again the equivalence to the earlier definition follows from parametrized representability.
To see the benefit of this definition, fix a set R and consider the adjunction

Set(X,Y → R) ∼= Set
op

(X → R, Y ) (4)

We can decompose this isomorphism quite naturally by setting O(X,Y ) to be Set(X ×
Y,R).

This is essentially what is happening in CBPV+stacks: we have three judgements,
denoting C-morphisms (values), oblique morphisms (computations) and D-morphisms
(stacks). But the above account is overly simplistic, for, as we shall see, we want D
to be locally indexed by C.

1.3. Element Style vs. Naturality Style. Universal properties in category
theory can usually be defined either in terms of elements or in terms of naturality of
isomorphisms. Here is a well-known example. A product for a family of objects {Ai}i∈I in
a category C consists of an object V —the vertex—together with either of the following:

• for each i ∈ I, a morphism V
πi �� Ai , such that the function

C(X,V ) −→ ∏
i∈I C(X,Ai) for all X (5)

f �−→ λi.(f ; πi)

is an isomorphism

• an isomorphism

C(X,V ) ∼= ∏
i∈I C(X,Ai) natural in X (6)

The equivalence of these two definitions follows from the Yoneda Lemma.
For the universal properties we will treat in this paper, we will give definitions in

element-style only, and leave the naturality-style formulation to future work—see also [Lev04].
Here is an important special case, adapted from [CLW93, Coc93] and used to interpret
sum types.

1.4. Definition. A distributive coproduct for a family of objects {Ai}i∈I in a cartesian

category C is an object V and a C-morphism Ai
ini �� V for each i ∈ I, such that the

functions

C(X × V, Y ) −→ ∏
i∈IC(X × Ai, Y ) for all X,Y (7)

f �−→ λi.((X × ini); f)

are isomorphisms.

Clearly, any distributive coproduct is a coproduct; the converse holds if C is carte-
sian closed but is false in general. A cartesian category with all finite (resp. countable)
distributive coproducts is called a distributive (resp. countably distributive) category.
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2. Review of Call-By-Push-Value

There are two variants of CBPV: finitary and infinitely wide. In this paper we treat
infinitely wide CBPV; the finitary case is treated by substituting “finite” for “countable”
throughout. (The reverse substitution would not work, because for both variants contexts
are finite, and hence the value category requires only finite products.)

CBPV has two disjoint classes of terms: values and computations. It likewise has two
disjoint classes of types: a value has a value type, while a computation has a computation
type. For clarity, we underline computation types. The types are given by

value types A ::= UB | ∑
i∈IAi | 1 | A × A

computation types B ::= FA | ∏
i∈I Bi | A → B

where I can be any countable set (finite, in finitary CBPV). The meaning of F and U is
as follows. A computation of type FA returns a value of type A. A value of type UB is
a thunk of a computation of type B, i.e. the computation is frozen into a value so that it
can be passed around. When later required, it can be forced i.e. executed.

Unlike in call-by-value, a function in CBPV is a computation, and hence a function
type is a computation type. We will discuss this further in Sect. 3.

Like in call-by-value, an identifier in CBPV can be bound only to a value, so it must
have value type. We accordingly define a context Γ to be a sequence

x0 : A0, . . . , xn−1 : An−1

of identifiers with associated value types. We often omit the identifiers and write just
A0, . . . , An−1. We write Γ �v V : A to mean that V is a value of type A, and we write
Γ �c M : B to mean that M is a computation of type B.

The terms of CBPV are given in Fig. 1. We assume formally that all terms are
explicitly typed, but in this paper, to reduce clutter, we omit explicit typing information,

We explain some of the less familiar constructs as follows. M to x. N is the sequenced
computation that first executes M , and when, this returns a value V proceeds to execute
N with x bound to V . This was written in Moggi’s syntax using let, but we reserve
let for mere binding. The keyword pm stands for “pattern-match”, and the symbol ‘
represents application in reverse order. Because we think of

∏
i∈I as the type of functions

taking each i ∈ I to a computation of type Bi, we have made its syntax similar to that
of →.

Following Lawvere [Law63], we say that a context morphism q from Γ = A0, . . . , Am−1

to ∆ = B0, . . . , Bn−1 is a sequence of values V0, . . . , Vn−1 where Γ �v Vi : Bi. As usual,
such a morphism induces (by induction [FPD99]) a substitution function q∗ from values
∆ �v V : C to values Γ �v V : C and from computations ∆ �c M : B to Γ �c M : B. We
define identity and composite context morphisms in the usual way.
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Γ, x : A, Γ′ �v x : A

Γ �v V : A Γ, x : A �c M : B

Γ �c let V be x. M : B

Γ �v V : A

Γ �c return V : FA

Γ �c M : FA Γ, x : A �c N : B

Γ �c M to x. N : B

Γ �c M : B

Γ �v thunk M : UB

Γ �v V : UB

Γ �c force V : B

Γ �v V : Aı̂
ı̂ ∈ I

Γ �v (̂ı, V ) :
∑

i∈IAi

Γ �v V :
∑

i∈IAi · · · Γ, x : Ai �c Mi : B · · · i∈I

Γ �c pm V as {. . . , (i, x).Mi, . . .} : B

Γ �v V : A Γ �v V ′ : A′

Γ �v (V, V ′) : A × A′
Γ �v V : A × A′ Γ, x : A, y : A′ �c M : B

Γ �c pm V as (x, y).M : B

· · · Γ �c Mi : Bi · · · i∈I

Γ �c λ{. . . , i.Mi, . . .} :
∏

i∈IBi

Γ �c M :
∏

i∈IBi
ı̂ ∈ I

Γ �c ı̂‘M : B ı̂

Γ, x : A �c M : B

Γ �c λx.M : A → B

Γ �v V : A Γ �c M : A → B

Γ �c V ‘M : B

Figure 1: Terms of Call-By-Push-Value
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3. The CK-Machine and the Stack Judgement

The operational semantics of CBPV is given in [Lev99] in big-step form, but here we use
a CK-machine, a style of semantics introduce in [FF86] for CBV—there are many similar
formulations [Kri85, PS98, SR98]. We describe it for computations on a fixed context
Γ (by contrast with big-step semantics, which is defined for closed computations only).
The machine is presented in Fig. 2, with types written explicitly. A configuration of the
machine, with types, has the form

Γ | M B K C (8)

where Γ �c M : B is the computation we are currently evaluating and K is the stack
(perhaps better known as an evaluation context, another concept that appeared in [FF86]).
Notice that Γ and C remain fixed throughout execution.

To begin with, we place the computation we wish to evaluate alongside the empty
stack, and we apply transitions until we reach a terminal configuration. When the com-
putation has the form M to x. N , we must first evaluate M , during which time we have
no need of N . So we move the context [·] to x. N onto the stack, and proceed to evaluate
M . Once we have evaluated M to the form return V , we remove that context from the
stack and proceed to evaluate N [V/x]. Similarly, to evaluate V ‘M we leave the operand
V on the stack while we evaluate M .

Classifying a function as a computation is a novelty of CBPV and, at first sight, seems
counterintuitive. But the CK-machine provides an explanation. For λx is treated as an
instruction “pop x” whilst V ‘ is treated as an instruction “push V ”. Thus a computation
of type A → B pops a value of type A and proceeds as a computation of type B. Similarly,
a computation of type

∏
i∈IBi pops a tag i ∈ I and proceeds as a computation of type

Bi.

In order to characterize the well-typed configurations, we require a judgement for
stacks, of the form Γ|B �k K : C. Thus a configuration (8) will be well-typed precisely
when Γ �c M : B and Γ|B �k K : C.

By inspecting Fig. 2, we can see that the typing rules for this judgment should be
as given in Fig. 3. This ensures that the well-typed configurations are precisely those
obtainable from an initial configuration.

There are some evident operations on stacks.

1. Given a context-morphism Γ
q �� ∆ and a stack ∆|B �k K : C we can substitute

q in L to give a stack Γ|B �k q∗K : C.

2. Given a computation Γ �c M : B and a stack Γ|B �k K : C, we can dismantle K
onto M to give Γ �c M • K : C, defined by induction on K. It is the computation
whose evaluation leads to the configuration (8). Think of this operation as “running
the CK-machine backwards”.
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Initial configuration for evaluation of Γ �c M : C

Γ | M C nil C

Transitions

Γ | let V be x. M B K C
� Γ | M [V/x] B K C

Γ | M to x. N B K C
� Γ | M FA [·] to x. N :: K C

Γ | return V FA [·] to x. N :: K C
� Γ | N [V/x] B K C

Γ | force thunk M B K C
� Γ | M B K C

Γ | pm (̂ı, V ) as {. . . , (i, x).Mi, . . .} B K C
� Γ | Mı̂[V/x] B K C

Γ | pm (V, V ′) as (x, y).M B K C
� Γ | M [V/x, V ′/y] B K C

Γ | ı̂‘M B ı̂ K C
� Γ | M

∏
i∈IBi ı̂ :: K C

Γ | λ{. . . , i.Mi, . . .}
∏

i∈IBi ı̂ :: K C
� Γ | Mı̂ B ı̂ K C

Γ | V ‘M B K C
� Γ | M A → B V :: K C

Γ | λx.M A → B V :: K C
� Γ | M [V/x] B K C

Figure 2: CK-Machine For CBPV, With Types
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Γ|C �k nil : C

Γ, x : A �c M : B Γ|B �k K : C

Γ|FA �k [·] to x. M :: K : C

Γ|B ı̂ �k K : C
ı̂ ∈ I

Γ|∏i∈IBi �k ı̂ :: K : C

Γ �v V : A Γ|B �k K : C

Γ|A → B �k V :: K : C

Figure 3: Typing rules for stacks

3. Given two stacks Γ|B �k K : C and Γ|C �k L : D, we can concatenate1 K and L
to give Γ|B �k K++L : D. We can regard concatenation as a form of substitution,
because K++L is K[L/nil].

3.1. Lemma. Substitution, dismantling and concatenation satisfy the following prop-
erties.

nil++K = K p∗nil = nil

K++nil = K p∗(K++L) = (p∗K)++(p∗L)
(K++L)++L′ = K++(L++L′) p∗(M • K) = (p∗M) • (p∗K)

M • nil = M id∗P = P
M • (K++K ′) = (M • K) • K ′ (p; q)∗P = p∗q∗P

4. Basic Structure

4.1. Interpreting Values. Like Moggi, we interpret values in a cartesian category
C, called the “value category”. As usual, the products in C are used for interpreting both
× and context extension (comma). Although there is no value in the language of the form
x : A×A′ �v V : A (for general A, A′), there will be after we extend the syntax in Sect. 7.

4.2. Interpreting Stacks. If values are interpreted in the cartesian category C,
stacks will be interpreted in a locally C-indexed category D. This can be defined in various
ways:

• as a strict C-indexed category (i.e. functor Cop −→ Cat) in which all the fibres DX

have the same set of objects ob D and all the reindexing functors Df are identity-
on-objects

• as a [Cop
,Set]-enriched category

• using the following concrete description.

1The reader who finds the idea of concatenating stacks to be strange need not worry, because concate-
nation and dismantling are never performed in the operational semantics. It is only for reasoning about
stacks that we consider these operations.
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4.3. Definition. A locally C-indexed category consists of

• a set ob D of D-objects which we underline (except where ob D = ob C)

• for each object X ∈ ob C and each pair of objects Y , Z ∈ ob D, a small set DX(Y , Z)

of D-morphisms written Y
f

X
�� Z

• for each object X ∈ ob C and each object Y ∈ ob D, an identity morphism

Y
idX,Y

X
�� Y

• for each morphism Y
f

X
�� Z and each morphism Z

g

X
�� W , a composite mor-

phism Y
f ;g

X
�� W

• for each D-morphism Y
f

X
�� Z and each C-morphism X ′ k �� X , a reindexed

D-morphism Y
k∗f

X′
�� Z

such that

id; f = f k∗id = id id∗f = f
f ; id = f k∗(f ; g) = (k∗f); (k∗g) (l; k)∗f = l∗(k∗f)

(f ; g); h = f ; (g; h)

It is easy to see that this is natural for interpreting stacks: a computation type will denote
an object of D and a stack Γ|B �k K : C will denote a D-morphism over [[Γ]] from [[B]] to
[[C]]. Then identity morphisms in D interpret nil, composition interprets concatenation
of stacks, and reindexing interprets substitution.

Before proceeding further, we develop some theory of locally indexed categories. Firstly,
it is clear that they form a 2-category, and we have operations −op

and ×. The most im-
portant example of a locally C-indexed category is called self C, and given by

ob self C = ob C
self CA(B,C) = C(A × B,C)

with the evident composition and reindexing. This is used in the following result, men-
tioned in [Mog91].

4.4. Proposition. A strong monad on C corresponds to a monad on self C.

As with ordinary categories, we wish to speak of the “homset functor” associated with
D, and we do this using the “opGrothendieck construction” as follows.
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4.5. Definition.

1. Let D be a locally C-indexed category. We write opGr D for the ordinary category
where

• an object is a pair XY where X ∈ ob C and Y ∈ ob D;

• a morphism from XY to X′Z in opGr D consists of a pair kh where X ′ k �� X

in C and Y h

X′
�� Z in D

• the identity on ΓX is given by idid;

• the composite of ΓX
kf ��

Γ′Y
lg ��

Γ′′Z is l;k((l
∗f); g).

2. For a locally D-indexed category, we write HomD, or D for short, for the functor

opGr(Dop ×D) �� Set

X(Y , Z) � �� DX(Y , Z)

k(f, h) � �� λg.(f ; (k∗g); h)

4.6. Interpreting Computations. If we are interpreting values in a cartesian cate-
gory C, and stacks in a locally C-indexed category D, then we will interpret computations
in a functor O : opGr D −→ Set, also called a right D-module. This can be described in
concrete terms.

4.7. Definition. A (locally C-indexed) right D-module is given by

• for each X ∈ ob C and Y ∈ ob D, a small set OXY , an element of which we call an

O-morphism over X to Y and write
g

X
�� Y

• for each X ′ k �� X and
g

X
�� Y a reindexed O morphism

k∗g

X′
�� Y

• for each
g

X
�� Y and Y h

X
�� Y ′ a composite O morphism

g;h

X
�� Y ′

satisfying identity, associativity and reindexing laws:

g; id = g id∗g = g k∗(g; h) = (k∗g); (k∗h)
g; (h; h′) = (g; h); h′ (k; l)∗g = k∗(l∗g)

where g is an O-morphism.

Our intention is that a computation Γ �c M : B will denote an O-morphism over
[[Γ]] to [[B]] and that q∗M will denote [[q]]∗[[M ]] while the dismantling M • K will denote
[[M ]]; [[K]].

We summarize the above discussion as follows.



ADJUNCTION MODELS FOR CALL-BY-PUSH-VALUE WITH STACKS 85

4.8. Definition. A CBPV judgement model consists of

• a cartesian category C
• a locally C-indexed category D
• a right D-module O.

4.9. Examples. Here are some examples of CBPV judgement models. We do not
motivate them individually, because they are given only as examples of the structure.

trivial Given a cartesian category C, set D to be self C and set OXY to be C(X,Y ).

cpo Let C be Cpo (directed-complete posets and continuous maps). Let a D-object be
a pointed cpo (a cpo with a least element) and a D-morphism over X from Y to
Z be a right-strict continuous function from X × Y to Z. Let OXY be continuous
functions from X to Y .

monad Given a strong monad T on a cartesian category C, we obtain a judgement model
(C, CT ,OT ), where a CT -object is a T -algebra, a CT -morphism over X from (Y, θ) to

(Z, φ) is a C-morphism X × Y
f �� Z satisfying

X × TY
t(X,Y ) ��

X×θ

��

T (X × Y )
Tf �� TZ

φ

��
X × Y

f
�� Z

and let OT
X(Y, θ) be C(X,Y ).

storage Given a set S, let C be Set, let D be self Set and let OXY be Set(S × X,Y ).

erratic choice Let C be Set, let D be the locally Set-indexed category Rel in which an
object is a set and a morphism over X from Y to Z is a relation from X × Y to Z,
and let an O-morphism over X to Y be a relation from X to Y .

continuations Given a set R, let C be Set, let D be (self Set)op and let OXY be Set(X×
Y,R).

4.10. Example: Possible Worlds. Our next example is a possible world semantics.
This is a way of modelling dynamically generated storage cells that was introduced for
CBN in [Ole82] and for CBV in [Mog90]. These were models of ground storage only, but
a CBV model for general storage was presented in [Lev02], and our example is the CBPV
version of it.

Let W be a countable category (countably many objects and morphisms), and for each
w ∈ ob W let Sw be a set. (The storage model above is the special case where W is the
unit category.) We define C to be [W ,Set], and D to be the locally C-indexed category
where
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• an object is a functor from W op
to Set

• a morphism over X from Y to Z is a dinatural transformation from X × Y to Z.

We define OXY to be ∏

w∈ob W
Set(Sw × Xw, Y w)

(Thus there is no naturality condition on a computation-morphism, nor can there be,
because S is not a functor.) Identity, composition and reindexing are defined in the
evident way.

5. CBPV Adjunction Models

5.1. Universal Properties. So far, the only type constructors we can interpret are
1 and ×. The rest are interpreted using the following universal properties. The notation
f ∗g means f ; g in the case that g is a value morphism.

5.2. Definition. In a CBPV judgement model (C,D,O),

UB a right adjunctive for a D-object B is a C-object V and an O-morphism force

V
�� B ,

such that the functions

C(X,V ) −→ OXB for all X (9)

f �−→ f ∗force

are isomorphisms

FA a left adjunctive for a C-object A is a D-object V and an O-morphism return

A
�� V ,

such that the functions

DX(V , Y ) −→ OX×AY for all X,Y (10)

h �−→ (π′∗
X,Areturn); (π∗

X,Ah)

are isomorphisms
∑

i∈IAi a distributive coproduct for a family {Ai}i∈I of C-objects is a C-object V and,

for each i ∈ I, a C-morphism Ai
ini �� V , such that the functions

C(X × V, Y ) −→ ∏
i∈IC(X × Ai, Y ) for all X,Y (11)

OX×V Y −→ ∏
i∈IOX×Ai

Y for all X,Y (12)

DX×V (Y , Z) −→ ∏
i∈IDX×Ai

(Y , Z) for all X,Y , Z (13)

f �−→ λi.((X × ini)
∗f)

are isomorphisms
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∏

i∈IBi a product for a family {Bi}i∈I of D-objects is a D-object V and, for each i ∈ I,

a D-morphism V
πi

1
�� Bi , such that the functions

OXV −→ ∏
i∈IOXBi for all X (14)

DX(Y , V ) −→ ∏
i∈IDX(Y ,Bi) for all X,Y (15)

h �−→ λi.(h; ( )∗πi)

are isomorphisms

A → B an exponential from a C-object A to a D-object B is a D-object V and a D-

morphism V ev

A
�� B , such that the functions

OXV −→ OX×AB for all X (16)

DX(Y , V ) −→ DX×A(Y ,B) for all X,Y (17)

h �−→ (π∗
X,Ah); (π′∗

X,Aev)

are isomorphisms.

5.3. Definition. A strong adjunction is a CBPV judgement model (C,D,O) with all
right adjunctives and left adjunctives—we say that it goes from C to D.

As a variation of the characterization of adjunctions in Sect. 1.2, we have

5.4. Proposition. [Lev01] A strong adjunction from C to D is equivalent to an
adjunction from self C to D.

Therefore a strong adjunction from C gives rise to a monad on self C i.e. (by Prop. 4.4)
a strong monad on C; hence the word “strong”.

5.5. Definition. A CBPV adjunction is a strong adjunction (C,D,O) with all
countable distributive coproducts, countable products and exponentials. We write U ,F ,→
etc. for the operations on objects. We write qU for the inverse of (9), etc.

It is obvious how to define the interpretation of CBPV in such a structure. The
following result shows that there is some redundancy in the definition of CBPV adjunction.

5.6. Proposition. In a CBPV judgement model with all left adjunctives,

products if the functions (15) are all isomorphisms then so are the functions (14)

exponentials if the functions (17) are all isomorphisms then so are the functions (16).

In a CBPV judgement model with all right adjunctives,

distributive coproducts if the functions (11) are all isomorphisms then so are the func-
tions (12).
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Proof.

products The isomorphism

DX(F1, Y )
∼= �� OX×1Y

∼= �� OXY

maps h to return; h, by calculation. So the diagram

DX(F1, V ) ��

∼=
��

∏
i∈I DX(F1, Bi)

∼=
��

OX(F1, V ) ��
∏

i∈I OXBi

commutes, by calculation. So if the top arrow is an isomorphism, the bottom arrow
must be too.

exponentials Similar, using the diagram

DX(F1, V ) ��

∼=
��

DX×A(F1, B)

∼=
��

OXV �� OX×AB

distributive coproducts The diagram

CX×V UY ��

∼=
��

∏
i∈I CX×Ai

UY

∼=
��

OX×V Y ��
∏

i∈I OX×Ai
Y

commutes by calculation. So if the top arrow is an isomorphism, the bottom arrow
must be too.

We draw attention to the requirement for (13) to be an isomorphism, which is not
eliminated by Prop. 5.6. It was mistakenly omitted in [Lev01] (which merely required C
to be countably distributive), and was brought to light by the stack judgement.

5.7. Examples. We now look again at the examples of CBPV judgement models
described in Sect. 4.9 to see when they have all the required universal elements. Notice
how the strong monad described in [Mog91] is recovered in all cases treated there. For
the possible world model, where the strong monad mentioned in [Lev02] is recovered, and
for the game model, the strong monad described in [AM98] is recovered.
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trivial The judgement model given by a cartesian category C is a CBPV adjunction iff C
is countably bicartesian closed, i.e. a ccc with all countable coproducts and products.
Such “trivial” models interpret CBPV with no computational effects at all. Indeed,
“CBPV adjunction” can be seen as a generalization of “countably bicartesian closed
category” to accommodate computational effects.

cpo This is clearly a CBPV adjunction with FA given as the lift of A, and UB = B.

monad/algebra The judgement model given by a strong monad T on a cartesian cate-
gory C is a CBPV adjunction iff

• C is countably distributive

• C has a product for every countable family of T -algebra carriers

• C has an exponential from every object to every T -algebra carrier.

where FA is the free T -algebra on A and UB is the carrier of B. Notice that these
conditions imply that C has all Kleisli exponentials and all countable products of
Kleisli exponentials.

storage, erratic choice, continuations The connectives are given by

model
∑

i∈I 1 × U F
∏

i∈I →
storage

∑
i∈I 1 × S → − S ×− ∏

i∈I →
erratic choice

∑
i∈I 1 × P − ∑

i∈I ×
continuations

∑
i∈I 1 × − → R − → R

∑
i∈I ×

possible worlds The
∑

1×∏→ connectives are given pointwise. For example, the
exponential A → B is given at w by Aw → Bw, which must be contravariant in
w because A is covariant and B is contravariant. For the adjunctives, recall the
coslice category w/W , in which an object is a world w′ together with a morphism

w
g �� w′ . The adjunctives are given at a world w by

(FA)w =
∑

(w′,g)∈w/W
(Sw′ × Aw′)

(UB)w =
∏

(w′,g)∈w/W
(Sw′ → Bw′)

and at a morphism x
f �� w by

((FA)f)(w′, w
g �� w′ , s′, a) = (w′, (f ; g), s′, a)

(((UB)f)α)(w′, w
g �� w′ , s′) = α(w′, (f ; g), s′)
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5.8. General Storage Models. We can generalize some of the examples in Sect. 5.7
(global store, possible worlds, continuations) into ways of building CBPV models from
other CBPV models. This enables us to model combinations of effects, rather like the
monad transformers of [CM93].

For global store, suppose that S is a C-object in a CBPV adjunction (C,D,O, . . .).
Then we obtain a storage model (C,D,O′) where O′

XY is defined to be OS×XY . The∑
1×∏→ connectives are unchanged, and the adjunctives are given by

F ′A = F (S × A)

U ′B = U(S → B)

For possible worlds, suppose we are given a CBPV adjunction (C,D,O, . . .), a category
W with countably many objects and morphisms, and a C-object Sw for each w ∈ W. We
then obtain a possible world model (C′,D′,O′) as follows.

• C′ is defined to be [W , C]

• a D′-object is a functor from W op
to D1

• a D′ morphism Y h

X
�� Z provides for each world w a morphism Y w hw

Xw
�� Zw ,

such that the diagram over Xw

Y w hw �� Zw

Y w′
(Xf)∗(hw′)

��

( )∗Y f

��

Zw′
( )∗Zf

��

commutes for each w
f �� w′

• O′
XY is defined to be ∏

w∈W
OSw×XwY w

• identity, composition and reindexing are defined in the evident way

• the
∑

1×∏→ connectives are given pointwise

• the adjunctives are given at a world w by

(FA)w = F
∑

(w′,g)∈w/W
(Sw′ × Aw′)

(UB)w = U
∏

(w′,g)∈w/W
(Sw′ → Bw′)

and at a morphism x
f �� w in the evident way.

Again, the global store construction is the special case that W is the unit category.
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5.9. General Continuation Models. To see the general construction of contin-
uation models, it is helpful to introduce a calculus. Let us write CBPV+R for CBPV
extended with a free computation type identifier R. This has a special fragment called
Jump-With-Argument (JWA), shown in Fig. 4–5. (Many similar continuation calculi ap-
pear in the literature [Dan92, LRS93, SF93, Sel01, Thi97].) JWA contains two kinds
of terms: values and nonreturning commands. We write Γ �n M to say that M is a
nonreturning command in context Γ.

Types
A ::= ¬A | ∑

i∈IAi | 1 | A × A

Judgements
Γ �v V : A Γ �n M

Terms:

Γ, x : A, Γ′ �v x : A

Γ �v V : A Γ, x : A �n M

Γ �n let V be x. M

Γ �v V : Aı̂
ı̂ ∈ I

Γ �v (̂ı, V ) :
∑

i∈IAi

Γ �v V :
∑

i∈IAi · · · Γ, xi : Ai �n Mi · · · i∈I

Γ �n pm V as {. . . , (i, xi).Mi, . . .}

Γ �v V : A Γ �v V ′ : A′

Γ �v (V, V ′) : A × A′
Γ �v V : A × A′ Γ, x : A, y : A′ �n M

Γ �n pm V as (x, y).M

Γ, x : A �n M

Γ �v γx.M : ¬A

Γ �v V : A Γ �v W : ¬A

Γ �n V ↗ W

Figure 4: Syntax of Jump-With-Argument

¬A is U(A → R)

Γ �n M is Γ �c M : R

γx.M is thunk λx.M

V ↗ W is V ‘force W

Figure 5: JWA as fragment of CBPV+R

We can substitute a context morphism Γ
q �� ∆ into a command ∆ �n M , giving a
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command Γ �n q∗M . This operation satisfies

id∗M = M

p∗q∗M = (p; q)∗M

For JWA, as for CBPV and CBV, we require a cartesian category to model the values.
For nonreturning commands, we require a functor N : Cop −→ Set, also called a left
C-module. This can be describe in concrete terms.

5.10. Definition.

1. A left C-module N consists of

• for each A ∈ ob C, a set NA of N -morphisms from A, written A
g ��

• for each C-morphism A
f �� A′ and N -morphism A′ g �� , a composite N -

morphism A
f ;g ��

satisfying identity and associativity laws

id; g = g

(f ; f ′); g = f ; (f ′; g)

where g is a N -morphism.

2. A JWA judgement model is a cartesian category C together with a left C-module N .

The only connectives we can interpret in a JWA judgement model are 1 and ×. To
interpret the other connectives, we once again need appropriate universal properties.

5.11. Definition. In a JWA judgement model (C,N ),

¬A a jumpwith for a C-object A is a C-object V and a N -morphism V × A
jump �� such

that the functions

CXV −→ NX×A for all X (18)

f �−→ (f × A)∗jump

are isomorphisms.
∑

i∈IAi a distributive coproduct for a family {Ai}i∈I of C-objects is a C-object V and,

for each i ∈ I, a C-morphism Ai
ini �� V , such that the functions

C(X × V, Y ) −→ ∏
i∈IC(X × Ai, Y ) for all X,Y (19)

NX×V −→ ∏
i∈INX×Ai

for all X (20)

f �−→ λi.((X × ini)
∗f)

are isomorphisms.
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A JWA model is a JWA judgement model with all jumpwiths and all countable distributive
coproducts, and we write ¬ and

∑
for the operations on objects.

There is some redundancy in the definition of JWA model, by analogy with Prop. 5.6.

5.12. Proposition. In a JWA judgement model with all jumpwiths,

distributive coproducts if the functions (19) are all isomorphisms then so are the func-
tions (20).

Proof. The isomorphism

CX¬1
∼= �� NX×1

∼= �� NX

maps f to (f, ( ))∗jump, by calculation. So the diagram

CX×V ¬1 ��

∼=
��

∏
i∈I CX×Ai

¬1

∼=
��

NX×V
��
∏

i∈I NX×Ai

commutes by calculation. So if the top arrow is an isomorphism, the bottom must be
too.

Now we know what a JWA model is, we can define 2 constructions.

1. Given a CBPV model (C,D,O) and D-object R, we obtain a JWA model (C,N )
by setting NX = OXR. The

∑
1× connectives are unchanged, and jumpwiths are

given by ¬A = U(A → R).

2. Suppose we are given a JWA model (C,N ). Then we obtain a CBPV adjunction
(C,D′,O′) where D′ is (self C)

op
and O′

XY is defined to be NX×Y . The
∑

1× con-
nectives are unchanged, and the other connectives are given by

F ′A = ¬A

U ′B = ¬B

A →′ B = A × B
∏′

i∈IBi =
∑

i∈IBi

6. Game Models

We wish to show the game semantics of [AHM98] to be a CBPV adjunction. It is conve-
nient to do this first without the bracketing condition, in the manner of [Lai97], which is
easier because it is a continuation model. Then we adapt the definitions to incorporate
the bracketing condition. It is also possible to treat models constrained by visibility and
innocence in the manner of [HO00, AM98], but we do not describe this here.
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6.1. JWA Model Without Bracketing Condition. We first construct the JWA
model. The basic definitions are standard:

6.2. Definition.

1. An (unlabelled) arena is a countable forest, i.e. a countable set R of tokens together
with a function enabler : R −→ {∗} + R such that, for every token r, the sequence

r = r0
� enabler �� r1

� enabler �� · · ·
eventually reaches ∗. We usually write R instead of (R, enabler), and we write rt R
for the set of tokens enabled by ∗.

2. A play in an arena R is a sequence of tokens t0, . . . , tn−1, together with a function
justifier : {0, . . . , n− 1} −→ {∗, 0, . . . , n− 1} such that, for all i ∈ {0, . . . , n− 1}, we
have

• justifier i < i

• enabler ti = tjustifier i

• justifier i is even iff i is odd

where ∗ is taken to be odd and < 0, and t∗ is defined to be ∗.
By contrast with the usual accounts, we make Player go first. So, for a play of length

n, we call i ∈ {0, . . . , n − 1} a P-move if i is even and an O-move if i is odd. Similarly,
we say the play is awaiting P if n is even, and awaiting O if n is odd.

6.3. Definition. A strategy for an arena R is a prefix-closed set σ of O-awaiting plays
that is deterministic i.e. if sm ∈ σ and sn ∈ σ then m = n. We write strat R for the set
of strategies on R.

This enables us to describe the homsets of the “thread-independent” category G
of [AHM98] (without the bracketing condition) by

G(R,S) =
∏

s∈rt S

strat(R 	 S�s) (21)

where we write 	 for disjoint union of arenas, and S�s for the arena of tokens in S strictly
below s.

We then define our JWA model (C,N ) in the manner of [AM98]. Thus, a C-object is
a countable family of arenas, and the homsets are given by

C({Ri}i∈I , {Sj}j∈J) =
∏

i∈I

∑

j∈J

G(Ri, Sj)

N{Ri}i∈I
=

∏

i∈I

strat Ri
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Identities and composition are defined in the usual way. The connectives are given as
follows:

{Ri}i∈I × {Sj}j∈J = {Ri 	 Sj}(i,j)∈I×J∑
i∈I{Rij}j∈Ji

= {Rij}(i,j)∈∑
i∈I Ji

¬{Ri}i∈I = {pti∈IRi}( )∈1

where pti∈IRi is the arena with I roots, and a copy of Ri pasted beneath the ith root.

6.4. CBPV Adjunction Model Without Bracketing Condition. We next
apply the construction of Sect. 5.9 to obtain a CBPV model (C,D′,O′) from our JWA
model. Let us write this out explicitly. An object of D, like an object of C, is a countable
family of arenas. The homsets are described by

C({Ri}i∈I , {Sj}j∈J) =
∏

i∈I

∑

j∈J

G(Ri, Sj)

O′
{Ri}i∈I

{Sj}j∈J =
∏

i∈I

∏

j∈J

strat(Ri 	 Sj)

D′
{Ri}i∈I

({Sj}j∈J , {Tk}k∈K) =
∏

i∈I

∏

k∈K

∑

j∈J

G(Ri 	 Tk, Sj)

The connectives are described by

{Ri}i∈I × {Sj}j∈J = {Ri 	 Sj}(i,j)∈I×J∑
i∈I{Rij}j∈Ji

= {Rij}(i,j)∈∑
i∈I Ji

U{Ri}i∈I = {pti∈IRi}( )∈1

F{Ri}i∈I = {pti∈IRi}( )∈1∏
i∈I{Rij}j∈Ji

= {Rij}(i,j)∈∑
i∈I Ji

{Ri}i∈I → {Sj}j∈J = {Ri 	 Sj}(i,j)∈I×J

6.5. CBPV Adjunction Model With Bracketing Condition. To describe
the bracketing condition, we first need to classify tokens into “question” and “answer”
tokens.

6.6. Definition.

1. A (Q/A-labelled) arena is an unlabelled arena (R, enabler) together with a labelling

function R
λQA

�� {Q, A} such that every token enabled by an answer is a question.
We say the arena is Q-rooted when, moreover, every root is a question.

2. For a countable family of arenas {Ri}i∈I , we write ptQi∈IRi for the arena with I roots,
all labelled Q, and a copy of Ri placed below the ith root.

3. For a countable family of Q-rooted arenas {Ri}i∈I , we write ptAi∈IRi for the arena
with I roots, all labelled A, and a copy of Ri placed below the ith root.
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6.7. Definition.

1. Let s be a P-awaiting play. Its pending question is the O-move Q0 if s is of the form

· · · Q0 [ Q · · · A
��

]∗

and ∗ if s is of the form
[ Q · · · A

��
]∗

2. Let s be an O-awaiting play. Its pending question is the P-move Q0 if s is of the
form

· · · Q0 [ Q · · · A
��

]∗

and does not exist if s is of the form

· · · A0 [ Q · · · A
��

]∗

where A0 is justified by ∗.
3. A play is well-bracketed when, for every prefix of the form sm where m is an A-move,

m points to the pending question of s.

4. A strategy under the bracketing condition on an arena R is a prefix-closed set of
O-awaiting well-bracketed plays on R satisfying determinism: if sm = σ and sn = σ
then m = n. We write stratb R for the set of all strategies under the bracketing
condition on R.

By analogy with (21), we define

Gb(R,S) =
∏

s∈rt S

stratb(R 	 S�s)

Now we construct our CBPV adjunction (C,D′,O′). A C-object is a family of Q-rooted
arenas, whereas a D′-object is a family of arenas (not necessarily Q-rooted). The adjunc-
tives are given by

U{Ri}i∈I = {ptQi∈IRi}( )∈1

F{Ri}i∈I = {ptAi∈IRi}( )∈1

Everything else is as in Sect. 6.4, replacing strat by stratb and G by Gb. All the (omitted)
definitions of identity, reindexing and composition adapt to the well-bracketed setting.
The value category and strong monad obtained are precisely those defined in [AHM98].

6.8. Remark. In [AHM98], the bracketing condition is imposed on both players, and
the categorical structure used there is dependent on that. The formulation given here has
the advantage that it works whether bracketing is imposed on both players, on neither
player, or on Player alone (as in [Har99]).
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7. The Equational Theory

7.1. Complex Values and Stacks. Since we want the term model of CBPV+stacks
to be a CBPV adjunction, we require additional syntax—otherwise we cannot even form
a projection x : A×A′ �v V : A to make a cartesian category of values. The rules for the
formation of “complex” values and stacks using binding and pattern-matching are given
in Fig. 6. We shall see in Sect. 7.2 that these new constructs can always be eliminated
from a computation. For example, return (pm V as (x, y).W ) can be simplified into
pm V as (x, y).return W .

We explain the where construct as follows. In any stack K to B there is a unique
occurrence of nil, and we can “bind” it to a stack L from B, giving the concatenated
stack K++L. A stack L′ from A → B is typically of the form V :: L, where V is a value
of type A and L is a stack from B; so it can be pattern-matched as x : nil in K.

We mention that omitting the let construct and the K where nil is L construct
would not affect the theory/model equivalence of Sect. 8.2; they are only a convenience.
The pattern-match constructs, on the other hand, are essential.

7.2. Properties of Equational Theory. The equational theory is the least
congruence on terms-in-context containing the laws in Fig. 7. To reduce clutter, we omit
the assumptions necessary to make each equation well-typed. Given a term P in context
Γ, we explicitly write its weakening by x : A as x:AP or just xP . Since a context must
consist of distinct identifiers, this notation implicitly assumes that x 
∈ Γ, so we avoid the
need for the traditional proviso x 
∈ FV(P ).

7.3. Lemma. Provable equality is closed under substitution, dismantling and concate-
nation.

Proof. Straightforward induction in each case.

7.4. Proposition. For any computation Γ �c M : B, we can obtain a computation
Γ �c M ′ : B that does not use the complex value constructs of Fig. 6, and a proof that
M = M ′ in the equational theory. Similarly, we can eliminate these constructs from any
closed value �v V : A.

Prop. 7.4, which does not involve stacks, is proved in [Lev01].

One noteworthy equation of Fig. 7 is the η-law

M • K = M to x. ((return x) • xK) (22)

This is equivalent to the two equations

M = M to x. return x (23)

(M to x. N) • K = M to x. (N • xK) (24)
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Complex Values

Γ �v V : A Γ, x : A �v W : B

Γ �v let V be x. W : B

Γ �v V :
∑

i∈IAi · · · Γ, x : Ai �v Wi : B · · · i∈I

Γ �v pm V as {. . . , (i, x).Wi, . . .} : B

Γ �v V : A × A′ Γ, x : A, y : A′ �v W : B

Γ �v pm V as (x, y).W : B

Complex Stacks

Γ �v V : A Γ, x : A|B �k K : C

Γ|B �k let V be x. K : C

Γ �v V :
∑

i∈IAi · · · Γ, x : Ai|B �k Ki : C · · · i∈I

Γ|B �k pm V as {. . . , (i, x).Ki, . . .} : C

Γ �v V : A × A′ Γ, x : A, y : A′|B �k K : C

Γ|B �k pm V as (x, y).K : C

Γ|C �k K : B Γ|B �k L : D

Γ|C �k K where nil is L : D

· · · Γ|C �k Ki : Bi · · · i∈I Γ|∏i∈IBi �k L : D

Γ|C �k {. . . , Ki where i :: nil, . . .} is L : D

Γ, x : A|C �k K : B Γ|A → B �k L : D

Γ|C �k K where x :: nil is L : D

Figure 6: Complex Values and Stacks
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(24) makes it clear why a stack denotes an algebra homomorphism in the monad models
of CBPV. As instances of (24) we have many familiar CBPV equations:

(M to x. N) to y. P = M to x. (N to y. xP )

λ{. . . , i.(M to x. Ni), . . .} = M to x. λ{. . . , i.Ni, . . .}
λy.( yM to x. N) = M to x. λy.N

In [Lev01] rather complex lemmas were required to prove these valid in an adjunction se-
mantics. It is an advantage of working with stacks that these equations become straight-
forward.

β-laws
let V be x. Q = Q[V/x]

K where nil is L = K++L
pm (̂ı, V ) as {. . . , (i, x).Qi, . . .} = Qı̂[V/x]

pm (V, V ′) as (x, y).Q = Q[V/x, V ′/y]
force thunk M = M

(return V ) to x. M = M [V/x]
ı̂‘λ{. . . , i.Mi, . . .} = Mı̂

{. . . , Ki where i :: nil, . . .} is ı̂ :: L = Kı̂++L
V ‘λx.M = M [V/x]

K where x :: nil is V :: L = K[V/x]++L
η-laws

Q[V/z] = pm V as {. . . , (i, x). xQ[(i, x)/z], . . .}
Q[V/z] = pm V as (x, y). xyQ[(x, y)/z]

V = thunk force V
M • K = M to x. ((return x) • xK)
K++L = [·] to x. ((return x) • xK) :: L

M = λ{. . . , i.i‘M, . . .}
K++L = {. . . , (K++i :: nil) where i :: nil, . . .} is L

M = λx.(x ‘ xM)
K++L = ( xK++x :: nil) where x :: nil is L

Figure 7: Equational laws for CBPV + stacks

8. General Theories

8.1. Signatures. We define a sequent to be a judgment without a term; thus a
sequent is of the form Γ �v B or Γ �c B or Γ|B �k K : B′. Here Γ is a finite sequence
A0, . . . , Ar−1 of value types, with no associated identifiers.
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In order to follow the approach of [LS86], we need the facility to add primitive oper-
ations to CBPV. Each operation has a “sorting” which is a sequent2. For example, the
sorting + is nat, nat �v nat. Applied to two values of type nat, it makes a value of type
nat. An operation div that returns a natural number, or—if the divisor is zero—raises
an error, has the sorting nat, nat �c Fnat.

More distinctively, we could have stack-like operations that build a computation M
into a computation f(V0, . . . , Vr−1|M) whose execution begins by executing M , and so
the context f(V0, . . . , Vr−1|[·]) is placed on to the stack for future use.

Γ | f(V0, . . . , Vr−1|M) B′ K C
� Γ | M B f(V0, . . . , Vr−1|[·]) :: K C

A signature is a collection of primitive operations; more formally, a function from sequents
to sets. The associated rules are shown in Fig. 8, and in Fig. 9 we define dismantling and
concatenation for the terms generated by a signature.

Γ �v V0 : A0 · · · Γ �v Vr−1 : Ar−1

Γ �v f(V0, . . . , Vr−1) : B
f ∈ S (A0, . . . , Ar−1 �v B)

Γ �v V0 : A0 · · · Γ �v Vr−1 : Ar−1

Γ �c f(V0, . . . , Vr−1) : B
f ∈ S (A0, . . . , Ar−1 �c B)

Γ �v V0 : A0 · · · Γ �v Vr−1 : Ar−1 Γ �c M : B

Γ �c f(V0, . . . , Vr−1|M) : B′ f ∈ S (A0, . . . , Ar−1|B �k B′)

Γ �v V0 : A0 · · · Γ �v Vr−1 : Ar−1 Γ|B′ �k K : C

Γ|B �k f(V0, . . . , Vr−1|[·]) :: K : C
f ∈ S (A0, . . . , Ar−1|B �k B′)

Figure 8: Rules For A Signature S

8.2. Theory/Model Equivalence. We are now in a position to state a the-
ory/model equivalence theorem. Our formulation of this theorem (though not the proof)
follows [LS86], in particular the use of structure preservation on the nose. For the pur-
poses of this section, we insist on defining a cartesian category to be a category with
distinguished terminal object and binary products. We cannot define it to be a category
with distinguished n-ary products for all n ∈ N, because the operations on objects and
on types must be identical for the on-the-nose approach to work. This is a flaw, pervasive
in categorical semantics, and we leave its rectification to future work.

2In [LS86], the only primitive operations required are constants, because in simply typed λ-calculus
every sequent is equivalent to a closed sequent, but in CBPV that is not true for value sequents.
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K M • K K++L
nil M

L
[·] to x. N :: K (M to x. N) • K

[·] to x. N :: (K++L)
ı̂ :: K (̂ı‘M) • K

ı̂ :: (K++L)
V :: K (V ‘M) • K

V :: (K++L)
let V be x. K let V be x. ( xM • K)

let V be x. (K++ xL)
pm V as {. . . , (i, x).Ki, . . .} pm V as {. . . , (i, x).( xM • Ki), . . .}

pm V as {. . . , (i, x).Ki++
xL, . . .}

pm V as (x, y).K pm V as (x, y).( xyM • K)
pm V as (x, y).(K++ xyL)

K where nil is K ′ (M • K) • K ′

K where nil is (K ′++L)
{. . . , Ki where i :: nil, . . .} is K ′ (λ{. . . , i.(M • Ki), . . .}) • K ′

{. . . , Ki where i :: nil, . . .} is (K ′++L)
K where x :: nil is K ′ (λx.(M • K)) • K ′

K where x :: nil is (K ′++L)
f(V0, . . . , Vr−1|[·]) :: K f(V0, . . . , Vr−1|M) • K

f(V0, . . . , Vr−1|[·]) :: (K++L)

Figure 9: Dismantling and Concatenation
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P [[P ]]
xi πi

let x be V. P (id, [[V ]])∗[[P ]]
return V [[V ]]∗prod
M to x. N [[M ]]; qF [[N ]]
force V [[V ]]∗force
thunk M qU [[M ]]
λx.M q→[[M ]]
V ‘M [[M ]]; [[V ]]∗ev
λ{. . . , i.Mi, . . .} q

∏
λi.[[Mi]]

ı̂‘M [[M ]]; ( )∗πı̂

(V, V ′) ([[V ]], [[V ′]])
pm V as (x, y). P ((id, ([[V ]]; π)), ([[V ′]]; π′))∗[[P ]]
(̂ı, V ) [[V ]]; inı̂

pm V as {. . . , (i, x).Pi, . . .} (id, [[V ]])∗q
∑

λi.[[Pi]]
nil id
[·] to x. M :: K (qF [[M ]]); [[K]]
ı̂ :: K (( )∗πı̂); [[K]]
V :: K ([[V ]]∗ev); [[K]]
K where nil is L [[K]]; [[L]]
{. . . , Ki where i :: nil, . . .} is L (q

∏
λi.[[Ki]]); [[L]]

K where x :: nil is L (q→[[K]]); [[L]]
f(V0, . . . , Vr−1) ([[V0]], . . . , [[Vr−1]])

∗f
f(V0, . . . , Vr−1|M) [[M ]]; ([[V0]], . . . , [[Vr−1]])

∗f
f(V0, . . . , Vr−1|[·]) :: K ([[V0]], . . . , [[Vr−1]])

∗f ; [[K]]

Figure 10: Categorical semantics
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f (equivalence class of terms) f (an arbitrary member)
id x0

f ∗g g[f/x0]

g; h (g an O-morphism) g • h
id nil

h; k (h a D-morphism) h++k
π πx0

π′ π′x0

(f, g) (f, g)
force force x0

qUf thunk f
return return x0

qF f [·] to x1. (f [(x0, x1)/x0]) :: nil
inı̂ (̂ı, x0)

q
∑

λi.gi pm x0 as {. . . , (x1, (i, x2)).fi[(x1, x2)/x0], . . .}
πı̂ ı̂ :: nil
q

∏
λi.gi (gi an O-morphism) λ{. . . , i.gi, . . .}

q
∏

λi.hi (hi a D-morphism) {. . . , hi where i :: nil, . . .} is nil

ev x0 :: nil
q→g (g an O-morphism) λx1.g[(x0, x1)/x0]

q→h (h a D-morphism) h[(x0, x1)/x0] where x1 :: nil is nil

Figure 11: Classifying Model Of A Theory
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We begin our account by defining an on-the-nose morphism from CBPV adjunction
(C,D,O, . . .) to CBPV adjunction (C′,D′,O′, . . .) in the obvious way. We then define Adj
to be the category of CBPV adjunctions and on-the-nose morphisms.

A theory for CBPV+stacks consists of

• a type structure τ , i.e. two (not necessarily small) sets valtypes τ and comptypes τ ,
equipped with a binary operation × on valtypes τ , and similarly with operations for
all the other connectives—note that τ is not required to be freely generated

• a τ -signature S, i.e. a function from sequents in τ to sets

• a congruence ≡ on the terms-in-context in τ generated from S according to Fig. 1,
6 and 8, containing all the equations of Fig. 7, and closed under substitution, dis-
mantling and concatenation.

8.3. Remark. An alternative formulation is followed in [Jef99, Lev96], avoiding the
mention of congruence. For fixed type structure τ , it is clear that the terms-in-context on
a given τ -signature S, quotiented by the equations of Fig. 7, form another τ -signature;
we write this as TτS. Moreover, we can extend Tτ to a monad on the category Sτ of
τ -signatures. (This makes use of Lemma. 7.3.) We then define a direct model to be a type
structure τ together with an algebra for the monad Tτ . This is equivalent to a theory.

An on-the-nose morphism G from a theory (τ, S,≡) to a theory (τ ′, S ′,≡′) provides

• a function from value types of τ to value types of τ ′, and similarly for computation
types, preserving all connectives

• a function from ≡-equivalence classes of S-values A0, . . . , Am−1 �v V : B to ≡′-
equivalence classes of S ′-values GA0, . . . , GAm−1 �v W : GB, and similarly for
computations and stacks, preserving all the term constructors.

We can prove by induction that G must preserve substitution, dismantling and concate-
nation. We write Th for the category of theories and on-the-nose morphisms, and can
now formulate our main result.

8.4. Proposition. The categories Adj and Th are equivalent.

Proof. Let A = (C,D,O, . . .) be a CBPV adjunction. We define its internal language
LA to be the following theory. The type structure τ is given by ob C and ob D. The
signature S is given by

S(A0, . . . , Ar−1 �v B) = C(A0 × · · · × Ar−1, B)

S(A0, . . . , Ar−1 �c B) = OA0×···×Ar−1B

S(A0, . . . , Ar−1|B �k C) = CA0×···×Ar−1(B,C)

We state rather pedantically that we define n-ary product in C by left association, so the
product of the singleton sequence A is 1 × A.
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We next interpret the terms generated by S in A, using the definitions in Fig. 10. We
then prove that M •K denotes [[M ]]; [[K]] and similarly for substitution and concatenation.
These are all straightforward inductions (the proof for substitution requires us to prove
that all the isomorphisms in Def. 5.2 are natural in X). We therefore see that the kernel of
the semantics preserves substitution, dismantling and concatenation; we set ≡ to be this
congruence. Showing that it satisfies all the required equational laws is straightforward.

In the opposite direction, given a theory L = (τ, S,≡) we define its classifying model
CL to be the following CBPV adjunction. The objects are just the types of τ , and the
operations on objects given by the type structure. The homsets are defined by

C(A,B) = S(A �v B)

OAB = S(A �c B)

CA(B,C) = S(A|B �k C)

All the categorical operations are defined in Fig. 11. Proving the equations of a CBPV
adjunction is trivial, using Lemma 3.1 generalized to terms generated by S.

Next we have to show these two operations L and C to be inverse up to on-the-nose
isomorphism. Given a model A = (C,D,O, . . .), we want to construct an on-the-nose
isomorphism αA from A to CLA = (C′,D′,O′). These two models have the same objects
and operations on objects, and we set αA to be identity on objects. The homsets of A′

are given by

C′(A,B) = C(1 × A,B)

O′
AB = O1×AB

D′
A(B,C) = D′

1×A(B,C)

and we set αA to reindex by the isomorphism from 1 × A to A. Proving that this is
structure-preserving is long and straightforward.

On the other hand, given a theory L = (τ, S,≡), we want to construct an on-the-
nose isomorphism βL from L to LCL = (τ, S ′,≡′). The two theories have the same type
structure, and we set βL to be identity on objects. The signature S ′ is given by

S ′(A0, . . . , Ar−1 �v B) = S(A0 × · · · × Ar−1 �v B)

S ′(A0, . . . , Ar−1 �c B) = S(A0 × · · · × Ar−1 �c B)

S ′(A0, . . . , Ar−1|B �k C) = S(A0 × · · · × Ar−1|B �k C)

and we set βL to reindex by the obvious context morphism from A0 × · · · × Ar−1 to
A0, . . . , Ar−1. Proving that this is structure preserving is straightforward.

It is obvious how to extend L and C to functors between Adj and Th, and it is then
easily seen that α and β are natural.
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9. Call-By-Value is Kleisli, Call-By-Name is co-Kleisli

Given a CBPV adjunction, we can form Kleisli and co-Kleisli adjunctions and obtain fully
faithful comparison functors.

self C
F

⊥
��

�

��

D
U

��

�

��

Kleisli co-Kleisli

CUF

��

��

���
�

�
�

�
�

�
�

�
�

DFU

��

��

���
�

�
�

�
�

�
�

�
�

In general:

• A CBV term is translated into a CBPV computation of the form A0, . . . , An−1 �c

M : FB. Hence it is interpreted in the Kleisli category. In fact we have a strong
adjunction between C and CUF , in the terminology of [LPT03] this is a strong κ-
category.

• A CBN term is translated into a CBPV computation of the form UA0, . . . , UAn−1 �c

M : B. Hence it is interpreted in the co-Kleisli category, in the fibre over 1.

For the cpo model, the Kleisli category (over 1) provides the partial maps model for
CBV [Plo85], while the co-Kleisli category (over 1) is pointed cpos and continuous maps—
the standard model for CBN. Similarly from the game model (with the appropriate con-
straints of bracketing, visibility and innocence), we recover the standard CBV and CBN
models [AM98, HY97, HO00, Nic96].

Notice that the duality, in a continuation model, between the Kleisli and co-Kleisli
categories [Sel01, SR98] is a consequence of the duality between C and D1.

10. Stacks For Non-Algebraic Effects

Certain effects such as exception-handling are called non-algebraic in [PP01]. They
present a problem for this work because they lead to additional stack terms that vi-
olate the laws we have imposed. As an example, for exception-handling we want the
transition

Γ | try M catch e.N FA K C
� Γ | M FA try [·] catch e.N :: K C

But consider the equation

K++L = [·] to x. ((return x) • xK) :: L
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from Fig. 7. Put try [·] catch e.return 5 :: nil for K and nil for L. The two sides
are clearly not equivalent: the LHS dismantled onto raise e returns 5, whereas the RHS
dismantled onto raise e raises e. In terms of the algebra model for the −+ E monad on
Set, a stack such as this K ought to denote a non-homomorphism.

This is roughly similar to the exception/continuation example in [Lai02]. More work
is certainly required to find an appropriate equational theory and categorical structure
for non-algebraic effects.

11. Further Directions

Most important is describing the universal properties in terms of naturality rather than
elements, by means of a Yoneda Lemma. The trickiest in this regard is the distributive
coproduct. See [Lev04] for further development of this.

In this paper we have presented the examples of CBPV adjunctions without any
motivation, but of course they need to be explained operationally, especially as regards
the stack morphisms; again, more information can be found in [Lev04].

The notion of stack judgement is in no way special to CBPV. It can be adapted to
CBV; instead of CBPV adjunction we obtain “strong κ-category”, presented in [LPT03]
although not related there to the CK-machine. For CBN, the advantage is even greater.
It appears that no categorical semantics for CBN has ever been given in the literature,
because the weak coproducts denoted by sum types have a complicated structure. But
stacks (provided only algebraic effects are allowed) resolve this problem: a family of CBN
terms Γ, x : Ai � M : B, indexed by i ∈ I, corresponds to a stack Γ|∑i∈IAi �k K : B.

There are apparent connections between the models here and polarized models such
as the game models in [CS, Lau02]. These need to be explored.
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