Every group is representable by all natural transformations of some set-functor

Libor Barto and Petr Zima

For every group G, we construct a functor F : SET --> SET (finitary for a finite group G) such that the monoid of all natural endotransformations of F is a group isomorphic to G.

Keywords: set functor, group universal category

2000 MSC: 18B15

Theory and Applications of Categories, Vol. 14, 2005, No. 13, pp 294-309.

http://www.tac.mta.ca/tac/volumes/14/13/14-13.dvi
http://www.tac.mta.ca/tac/volumes/14/13/14-13.ps
http://www.tac.mta.ca/tac/volumes/14/13/14-13.pdf
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/14/13/14-13.dvi
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/14/13/14-13.ps

TAC Home