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NORMED COMBINATORIAL HOMOLOGY
AND NONCOMMUTATIVE TORI

Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday

MARCO GRANDIS

Abstract. Cubical sets have a directed homology, studied in a previous paper and
consisting of preordered abelian groups, with a positive cone generated by the structural
cubes. By this additional information, cubical sets can provide a sort of ‘noncommu-
tative topology’, agreeing with some results of noncommutative geometry but lacking
the metric aspects of C∗-algebras. Here, we make such similarity stricter by introducing
normed cubical sets and their normed directed homology, formed of normed preordered
abelian groups. The normed cubical sets NCϑ associated with ‘irrational’ rotations have
thus the same classification up to isomorphism as the well-known irrational rotation
C∗-algebras Aϑ.

Introduction

This is a sequel of a previous work [7], referred to as Part I, which introduced a directed
homology of cubical sets, consisting of preordered abelian groups. Some of its main results
are linked with noncommutative geometry; here, we strengthen such links, by enriching
cubical sets and their homology groups with a norm. (Subsection 1.2 of Part I will be
cited as I.1.2.)

First, let us note that this homology norm can distinguish between metrically-different
realisations of the same homotopy type, the one of the circle. Thus, applying the normed
directed 1-homology group N↑H1 to the standard normed directed circle N↑S1, where the
length of a homology generator is 2π, we get 2π.↑Z as a normed ordered subgroup of the
line. Similarly, the normed directed 1-torus N↑T = ↑R/Z gives the group of integers ↑Z
with natural norm and order, since now the length of a homology generator is 1. Finally,
the (naturally normed) singular cubical set of the punctured plane R2 \{0} assigns to the
group Z the coarse preorder and the zero (semi)norm, making manifest the existence of
(reversible) 1-cycles of arbitrarily small length (3.5).

These rather obvious aspects become of interest in a well-known situation where an
ordinary topological approach fails. Let us recall that the group Gϑ = Z+ϑZ (ϑ irrational)
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is dense in the real line, and the orbit space R/Gϑ has a trivial topology, the coarse one.
This trivial quotient, corresponding to the set of leaves of an irrational Kronecker foliation
of the 2-torus, has been interpreted as a ‘noncommutative space’, the irrational rotation
C∗-algebra Aϑ, also called a noncommutative torus [4, 5, 11, 1]. As proved in [10, 11],
K-theory gives precise classifications of these algebras, depending on ϑ: first, up to strong
Morita equivalence, ϑ is determined up to the action of the group PGL(2,Z) (cf. 1.4);
second, up to isomorphism, Aϑ

∼= Aζ if and only if Gϑ = Gζ (as subsets of R), if and only
if ζ ∈ ±ϑ + Z (cf. 1.4).

In Part I, we showed how that trivial quotient can be replaced with a naturally occur-
ring cubical set, Cϑ = ↑R/Gϑ, the quotient of the cubical set ↑R whose n-cubes are the
continuous order-preserving mappings In → R, under the action of the group Gϑ. In fact,
the directed 1-homology group ↑H1(Cϑ) is isomorphic to ↑Gϑ as an ordered subgroup of
R (Thm. I.4.8); it follows (Thm. I.4.9) that the classification of the cubical sets Cϑ up
to isomorphism coincides with that of the algebras Aϑ up to strong Morita equivalence,
recalled above. A comparison with the stricter classification of the latter up to isomor-
phism suggests that cubical sets provide a sort of ‘noncommutative topology’, without
the metric character of noncommutative geometry.

Here, to account for this character, we enrich Cϑ with a natural normed structure
NCϑ, essentially produced by the length of (increasing) paths I → R (1.4). Now, normed
directed 1-homology gives N↑H1(NCϑ) ∼= ↑Gϑ as a normed ordered subgroup of R (Thm.
4.1). It follows easily that the normed cubical sets NCϑ have precisely the same classifi-
cation up to isomorphism as the C∗-algebras Aϑ (Thm. 4.2).

We end this introduction with some technical remarks. Norms for sets (2.1), cubical
sets (1.1) and abelian groups (3.1) will take values in [0,∞], so that these categories have
all products (and some useful left adjoints); morphisms in these categories are always
assumed to be (weakly) contracting, so that isomorphisms are isometrical. Moreover, in
an abelian group, ‖x‖ = 0 will not imply x = 0: this assumption would annihilate useful
information, as for the punctured plane recalled above.

Preorder of homology groups does not play a relevant role here, since the metric
information is sufficient for our main goals; however, preorder is an independent aspect,
which distinguishes - for instance - between N↑S1 and its non-directed version N�S1 (1.5,
3.5); this might be of use in other less obvious cases. It is also interesting to note that,
in the present proofs, the arguments concerning norms are similar to the ones concerning
preorders in Part I, if more complicated; this is likely related with the fact that preorder
is a simplified, two-valued generalised metric (1.5).

References and motivation for directed algebraic topology can be found in [6]; for
cubical sets in [7], including why we prefer to work with them rather than with simplicial
sets.

Finally, some comments on notation will be of help. Structures enriched with some
sort of direction, including preorder, are usually denoted by the prefix ‘d’ or ↑. Structures
enriched with a norm may be distinguished by ‘N’. We always omit the latter for normed
abelian groups: thus, the group Z has the natural norm, inherited from the reals, whenever
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the context requires a norm and we are not specifying a different one; similarly for λZ (λ >
0), Gϑ and the (naturally) ordered groups λ↑Z, ↑Gϑ.

1. A general overview

This is an outline of the main topics and results of the paper. The index α takes values
0, 1, also written −, + (e.g. in superscripts).

1.1. Normed cubical sets. The theory of normed cubical sets will be briefly examined
in Section 2, and their normed directed homology introduced in Section 3; for the moment,
it will be sufficient to have a few definitions.

First, let us recall that a cubical set X = ((Xn), (∂α
i ), (ei)) is a sequence of sets Xn (n ≥

0), together with mappings, called faces (∂α
i ) and degeneracies (ei)

∂α
i = ∂α

n,i: Xn → Xn−1, ei = en,i: Xn−1 → Xn (α = ±; i = 1, . . . , n), (1)

satisfying the cubical relations

∂α
i .∂β

j = ∂β
j .∂α

i+1 (j ≤ i), ej.ei = ei+1.ej (j ≤ i),

∂α
i .ej = ej.∂

α
i−1 (j < i), or id (j = i), or ej−1.∂

α
i (j > i).

(2)

A morphism f = (fn): X → Y is a sequence of mappings fn: Xn → Yn commuting with
faces and degeneracies. All this forms a category Cub which has all limits and colimits
and is cartesian closed (it is a category of presheaves).

Now, a normed cubical set will be a cubical set X equipped with a sequence of ‘norms’
which annihilate on degenerate elements

‖ − ‖: Xn → [0, +∞], ‖ei(a)‖ = 0 (∀a ∈ Xn). (3)

We do not require any coherence condition for faces, nor any restriction on the norm of
a point; for instance, a degenerate edge must have norm zero, but its vertices can have
any norm. The category NCub of normed cubical sets has, for morphisms, the (weakly)
contracting morphisms of cubical sets f : X → Y , with ‖fn(x)‖ ≤ ‖x‖, for all x ∈ Xn.

(The cubical sets we are to consider might be viewed as c-sets (I.1.9): such an object
is a set K equipped with a sub-presheaf c∗K of the cubical set of components Set(In, K),
such that K is covered by all distinguished cubes. And we could introduce normed c-sets,
as c-sets with a norm on their structural presheaf; but this would be of limited utility,
here.)

1.2. Elementary models. A normal cubical set has norm 1 on all non-degenerate
entries (and 0 on the degenerate ones). All the ‘elementary’ cubical sets considered in
I.1.5 will be equipped with this normal norm and denoted with the same symbols.
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Thus, ↑i = 2 will denote here the normal directed elementary interval, freely generated
(as a normal cubical set) by a 1-cube u

0
u �� 1 ∂−

1 (u) = 0, ∂+
1 (u) = 1, ‖u‖ = ‖0‖ = ‖1‖ = 1. (4)

More generally, the normed directed elementary n-cube ↑in is the normal object gen-
erated by one n-cube, for n ≥ 0. (It is a tensor power ↑i⊗. . .⊗↑i, cf. 27).

The normed directed elementary circle ↑s1 is the normal object generated by a 1-cube
u with equal faces

∂−
1 (u) = ∗ = ∂+

1 (u), ‖u‖ = ‖ ∗ ‖ = 1. (5)

Similarly, the normed directed elementary n-sphere ↑sn(n > 1) is the normal object
generated by an n-cube u, all whose faces are totally degenerate (hence equal)

∂α
i (u) = (e1)

n−1(∂−
1 )n(u), ‖u‖ = ‖ ∗ ‖ = 1 (α = ±; i = 1, . . . , n), (6)

while ↑s0 = s0 is the normal object generated by two vertices. The n-dimensional torus
↑tn will be defined in 27, as a tensor power of ↑s1.

Finally, the normed ordered circle ↑o1 is the normal object generated by two edges
with the same faces

v−
u′

��

u′′
�� v+ ∂α

1 (u′) = ∂α
1 (u′′), ‖u′‖ = ‖u′′‖ = ‖v−‖ = ‖v+‖ = 1. (7)

and more generally the normed ordered sphere ↑on is the normal object generated by two
n-cubes u′, u′′ with the same boundary: ∂α

i (u′) = ∂α
i (u′′).

For the links of these objects with suspension, pointed or not, see I.1.7 and I.5.2.

1.3. Normed directed circles. Since metric aspects are relevant in our treatment,
we shall distinguish between the standard circle S1, equipped with the natural geodetic
metric, and the standard 1-torus T, with the metric induced by the line

S1 ∼= R/2πZ, T = R/Z, (8)

so that a simple loop has, respectively, a length of 2π and 1.
To interpret such spaces as normed cubical sets, let us start from the directed line

↑R, a cubical set produced by topology and natural order: its n-cubes are the continuous
order-preserving mappings a: In → R, with obvious faces and degeneracies - produced by
the cofaces and codegeneracies of the standard cubes In. (In Part I, this cubical set is
rather viewed as the corresponding c-set; see the last remark of 1.1.)

The normed directed line N↑R will be this cubical set, with the following, obvious
norm on the n-cube a: In → R

n = 0: ‖a‖ = 1, n = 1: ‖a‖ = a(1) − a(0), n > 1: ‖a‖ = 0; (9)
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note that, in degree 1, a is an increasing path and ‖a‖ is its length.
Now, the groups Z and 2πZ act on the line, by translations, as well as on N↑R.

The quotient cubical sets are, by definition, the normed directed circle N↑S1 and normed
directed 1-torus N↑T

N↑S1 = (N↑R)/(2πZ), N↑T = (N↑R)/Z; (10)

the quotient norm is obviously ‖[a]‖ = ‖a‖, each action being isometrical. (General
quotient norms will be dealt with in 2.1.)

1.4. Normed cubical sets of irrational rotation. Consider now, on the real line,
the action (by translations) of the additive subgroup Gϑ = Z+ϑZ, where ϑ is an irrational
real number. Gϑ is dense in R and the orbit space R/Gϑ = T/ϑZ is topologically trivial:
an uncountable set with the coarse topology.

In Part I, we have seen the advantage of replacing this useless quotient with the cubical
set

Cϑ = ↑R/Gϑ, (11)

where ↑R is the cubical set recalled above (1.3), with the obvious action of the group Gϑ.
Indeed, the homology of the cubical set Cϑ is not trivial, but coincides with the homology
of the group Gϑ

∼= Z2, whence with the homology of the torus T2. Moreover, directed
homology gives further relevant information: ↑H1(Cϑ) ∼= ↑Gϑ as an ordered group (the
natural order of real numbers), by Theorem I.4.8; it follows (I.4.9) that Cϑ

∼= Cζ if and
only if ϑ and ζ are in the same orbit of the action of the group PGL(2,Z): in other
words, each of them can be obtained from the other applying, finitely many times, the
transformations R(t) = t− 1 and T k(t) = t + k (on R \Q; for k ∈ Z, or k = ±1). This is
precisely the classification of the rotation C∗-algebra Aϑ up to strong Morita equivalence
([11], Thm. 4), recalled in I.4.1.

But these algebras have a stricter classification up to isomorphism, coming from the
metric information contained in C∗-algebras: essentially, the fact that the traces of the
projections of K0(Aϑ) form the subset Gϑ∩ [0, 1] ⊂ R (a result of Pimsner, Voiculescu and
Rieffel, see [10] and [11], Thm. 1.2), as recalled in I.4.1. It follows easily that Aϑ

∼= Aζ if
and only if Gϑ = Gζ (as subsets of R), if and only if ζ ∈ ±ϑ + Z (as in the proof of 4.2).

Here, we will obtain similar results enriching the cubical set Cϑ with a norm. First,
let us replace the cubical set ↑R with the normed cubical set N↑R (9). Again, the group
Gϑ = Z + ϑZ acts isometrically on it, and the quotient has an obvious norm

NCϑ = (N↑R)/Gϑ, ‖[a]‖ = ‖a‖. (12)

NCϑ will be called an irrational rotation normed cubical set. Our main results here
(Thms 4.1, 4.2) will prove that the normed homology NH1(N↑R/Gϑ) is isomorphic to Gϑ,
as a normed subgroup of the line, and deduce that the classification of the normed cubical
sets NCJ , up to isomorphism, is the same as the one of the rotation algebras AJ , recalled
above.

More generally, similar results hold for Gϑ =
∑

j ϑjZ ⊂ R, where ϑ = (ϑ1, . . . , ϑn) is
an n-tuple of real numbers linearly independent on the rationals (4.3).
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1.5. Metric spaces. The last two subsections suggest that it would be useful, starting
from a metric space X, to define a norm N�X on the singular cubical set �X. Here, we
only sketch a beginning of this program, sufficient for normed homology in degree 0 and 1
(in higher degrees, Riemannian manifolds and smooth cubes might be more convenient).

We shall use a generalised, non-symmetric notion of metric space adequate for directed
algebraic topology (cf. [6]), and natural within the theory of enriched categories (cf. [9]).
Thus, a directed metric space or d-metric space, is a set X equipped with a d-metric
δ: X×X → [0,∞], satisfying the axioms

δ(x, x) = 0, δ(x, y) + δ(y, z) ≥ δ(x, z). (13)

(If the value ∞ is forbidden, such a function is usually called a quasi-pseudo-metric, cf.
[8].) A symmetric d-metric (satisfying δ(x, y) = δ(y, x)) will be called here a (generalised)
metric; it is the same as an écart in Bourbaki [2].

dMtr will denote the category of such d-metric spaces, with d-contractions f : X →
Y (δ(x, x′) ≥ δ(f(x), f(x′))). Limits and colimits exist and are calculated as in Set;
products have the l∞ d-metric and equalisers the restricted one, while sums have the
obvious d-metric and coequalisers have the d-metric induced on the quotient ([6], 4.7).

Now, it is clear how we should define the norm of a cube a: In → X in degrees 0, 1

n = 0: ‖a‖ = 1,
n = 1: ‖a‖ = supp

∑
i δ(a(ti−1), a(ti)), ti = i/p (i = 0, 1, . . . , p);

(14)

moreover, if X is a 1-dimensional manifold, we are done: all higher cubes can be given
norm 0.

This way, the standard circle S1, with the geodetic metric, produces a normed cubical
set N�S1 which is an extension of the normed directed circle N↑S1 (10); similarly, the
1-torus N�T = N�(R/Z) = (N�R)/Z is an extension of the directed version N↑T. On
the other hand, the punctured plane R2 \ {0} (with the euclidean metric) gets a norm
on �1(R

2 \ {0}) with arbitrarily small loops. Normed homology will distinguish all such
‘spaces’ (3.5).

One should notice that the functor N�1: dMtr → NSet does not preserve quotients:
for instance, R/Gϑ has a trivial metric, 0 everywhere, while the norm of (N�1R)/Gϑ is
not trivial.

Finally, it is interesting to note that a preorder amounts to a d-metric with values
in {0,∞}, setting x ≤ y when δ(x, y) = 0. This can explain why various arguments for
the norm, in the sequel, are a sort of enriched version of the corresponding arguments for
preordering, in Part I.

2. Normed cubical sets

Normed sets and normed cubical sets are equipped with a sort of extended ‘seminorm’.
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2.1. Normed sets. As motivated in the Introduction, our norms - for sets, cubical sets
or abelian groups - will always take values in the commutative ordered semiring [0,∞], an
extension of R+ where ∞ acts in the obvious way, except perhaps in one case, 0.∞ = 0
(if consistent with the product of cardinals)

a + ∞ = ∞, 0.∞ = 0, b.∞ = ∞ (b > 0). (15)

A normed set will be a set X = (X, ‖ − ‖) equipped with a norm, consisting of an
arbitrary mapping

‖ − ‖: X → [0,∞]. (16)

A (weak) contraction f : X → Y has ‖f(x)‖ ≤ ‖x‖, for all x ∈ X. NSet will denote
the category of these normed sets and contractions; an isomorphism is thus a bijective
isometry: ‖f(x)‖ = ‖x‖, for all x. This category has all limits and colimits, constructed
as in Set and equipped with a suitable norm (strictly determined).

Thus, a product
∏

Xi and a sum
∑

Xi (where Xi = (Xi, ‖ − ‖i) have the following
norms

‖(xi)‖ = supi ‖xi‖i ((xi) ∈
∏

Xi),
‖(x, i)‖ = ‖x‖i (x ∈ Xi),

(17)

while a normed subset has the restricted norm, and a quotient X/∼ has the induced one

‖ξ‖ = inf{‖x‖ | x ∈ ξ} (ξ ∈ X/∼). (18)

Plainly, infinite products exist because we are allowing an infinite norm. By the same
reason, the forgetful functor | − |: NSet → Set has a left adjoint N∞S, which equips the
set S with the discrete norm, always ∞. The right adjoint N0S has the codiscrete, or
coarse norm, always zero. On the other hand, the unit-ball functor B1

B1: NSet → Set, B1(X) = {x ∈ X | ‖x‖ ≤ 1}, (19)

has a left adjoint N1S, which equips the set S with the constant norm at 1. The set S
will often be identified with N1S, called the associated normal normed set.

2.2. Tensor products. We have seen that, in the cartesian product X×Y of normed
sets, ‖(x, y)‖ = ‖x‖ ∨ ‖y‖.

But NSet has a closed symmetric monoidal structure, with tensor product X⊗Y given
by the cartesian product |X|×|Y | of the underlying sets, with a different norm on a pair
x⊗y (written thus to avoid confusion with the cartesian product)

‖x⊗y‖ = ‖x‖.‖y‖. (20)

The identity of the tensor product is the singleton {∗} = N1{∗}, with ‖ ∗ ‖ = 1; note
that the representable functor produced by it is (isomorphic to) B1, which acquires thus
a privileged status

NSet({∗},−): NSet → Set, NSet({∗}, X) = B1(X), (21)
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and can be viewed as the ‘true’ forgetful functor to Set, even if not faithful.
The internal hom is the set of all mappings, equipped with the Lipschitz norm, i.e.

the least Lipschitz constant of a mapping (possibly ∞, again)

Lip∞(Y, Z) = Set(|Y |, |Z|),
‖f‖ = inf{L ∈ [0,∞] | ‖f(y)‖ ≤ L.‖y‖, ∀ y ∈ Y }. (22)

In fact, the usual bijection Set(X×Y, Z) = Set(X,Set(Y, Z)) which identifies f : X×
Y → Z with g: X → Set(Y, Z) under the condition f(x, y) = g(x)(y), provides two
isometries

Lip∞(X⊗Y, Z) = Lip∞(X,Lip∞(Y, Z)), ‖f‖ ≤ L ⇐⇒ ‖g‖ ≤ L,
NSet(X⊗Y, Z) = NSet(X,Lip∞(Y, Z)).

(23)

And of course, the unit-ball functor B1, applied to the normed set of all mappings,
gives back the contracting ones

B1(Lip∞(Y, Z)) = NSet(Y, Z), (24)

as it happens in the well-known case of Banach spaces, in the interplay between bounded
linear maps and linear contractions (cf. [12]).

2.3. Normed cubical sets. We have already defined such objects and their category,
NCub (1.1).

Recall that normal cubical sets have norm 1 on all non-degenerate entries (1.2). As
for normed sets (19), they are produced by an obvious functor N1:Cub → NCub. But,
here, its right adjoint B1: NCub → Cub selects only those entries which have norm ≤ 1
together with all their iterated faces, of any order

N1 : Cub � NCub : B1, N1 � B1. (25)

Since limits and colimits in Cub are constructed componentwise in Set, the same
holds for NCub, with - on each component - the norm resulting from the (co)limit, as in
2.1.

Similarly, the (non symmetric!) tensor product of Cub ([3]; I.1.4) can be lifted to
NCub

(X⊗Y )n = (
∑

p+q=n |Xp|×|Yq|)/ ∼n, ‖x⊗y‖ = ‖x‖.‖y‖, (26)

since the equivalence relation only identifies pairs whose norm is 0 and, moreover, a
degenerate tensor always has a degenerate factor. The identity of the tensor product is
the singleton {∗} = N1{∗}, with ‖ ∗ ‖ = 1. Normal cubical sets are closed under tensor
product.

Thus, the normed directed elementary n-cube ↑in (1.2) is a tensor power of ↑i, and
the normal directed elementary n-torus ↑tn is defined as a tensor power of the normal
directed elementary circle

↑in = ↑i⊗. . .⊗↑i = (↑i)⊗n, ↑tn = ↑s1⊗. . .⊗↑s1 = (↑s1)⊗n (27)
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2.4. Connected components. For a cubical set X, the homotopy normed set π0(X)
is defined as a quotient of normed sets (18)

π0(X) = X0/ �, ‖[x]‖ = inf{‖y‖ | y � x}, (28)

where the equivalence relation � (connection) is generated by being vertices of a common
edge. The connected component of X at an equivalence class [x] ∈ π0(X) is the normed
cubical subset formed by all cubes of X whose vertices lie in [x]; X is always the sum of
its connected components. If X is not empty, we say that it is connected if it has one
connected component, or equivalently if π0(X) is a singleton.

The forgetful functor (−)0: NCub → NSet has a left adjoint, the discrete normed
cubical set on a normed set

D: NSet → NCub, (29)

where components are constant, (DS)n = S (n ∈ N), faces and degeneracies are identities,
the norms of vertices are unchanged (and the norms in higher degree are zero). Then, the
functor π0: NCub → NSet is left adjoint to D.

3. Normed directed homology

Directed homology of cubical sets, studied in Part I, is enriched with norms.

3.1. Normed abelian groups. Normed directed homology will take values in normed
preordered abelian groups, a ‘metric’ version of the category dAb of preordered abelian
groups used in Part I.

Here, a normed abelian group L is equipped with a norm ‖λ‖ ∈ [0,∞] such that

‖0‖ = 0, ‖ − λ‖ = ‖λ‖, ‖λ + µ‖ ≤ ‖λ‖ + ‖µ‖. (30)

Note that, for n ∈ N, we only have ‖n.λ‖ ≤ n.‖λ‖ (requiring equality would make
quotients difficult to handle).

For a normed preordered abelian group ↑L, no coherence conditions between preorder
and norm are required. In the category NdAb of such objects, a morphism is a con-
tracting homomorphism (‖f(λ)‖ ≤ ‖λ‖) which respects preorder. But also the purely
algebraic homomorphisms of the underlying abelian groups will intervene, denoted by
dashed arrows, ���.

NdAb has all limits and colimits, computed as in Ab and equipped with a suitable
norm (as in 2.1) and preorder (as in dAb). The tensor product ↑L⊗↑M of dAb (with
positive cone generated by the tensors of positive elements, I.2.2) can be lifted to NdAb,
with a norm

‖ξ‖ = inf{∑i ‖λi‖.‖µi‖ | ξ =
∑

i λi⊗µi ∈ ↑L⊗↑M}, (31)

which solves the universal problem for preorder-preserving bi-homomorphisms ϕ: ↑L×
↑M → ↑N such that ‖ϕ(λ, µ)‖ ≤ ‖λ‖.‖µ‖. This makes a closed symmetric monoidal
structure: the internal hom ↑Hom(↑M, ↑N) is the abelian group of all homomorphisms
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of the underlying abelian groups, with the positive cone of preorder preserving homomor-
phisms (as in I.2.2) and the Lipschitz norm (22).

The unit of the tensor product is the ordered group of integers ↑Z with the natural
norm, |k|. Again, the representable functor NdAb(↑Z,−), applied to the internal Hom,
gives back the set of morphisms

NdAb(↑Z, ↑L) = B1(L
+), B1(Hom+(↑M, ↑N)) = NdAb(↑M, ↑N). (32)

The forgetful functor NdAb = dAb has a left adjoint N∞↑L and right adjoint N0↑L,
respectively giving to a preordered abelian group ↑L its discrete ∞-norm (‖λ‖ = ∞ for
λ �= 0) or the coarse one (‖λ‖ = 0).

The forgetful functor NdAb = NSet has a left adjoint, associating to a normed set S
the free normed ordered abelian group ↑ZS, which is the free abelian group generated by
the underlying set, equipped with the obvious norm

‖∑
x kx.x‖ =

∑
x |kx|.‖x‖, (33)

((kx)x∈S is a quasi-null family of integers) and with the order whose positive cone is the
monoid NS of positive combinations, with kx ∈ N.

3.2. Chain complexes. We shall also use the category NdC∗Ab of normed directed
chain complexes: their components are normed preordered abelian groups, differentials
are not assumed to respect norms or preorders, but chain morphisms are: they must be
contracting and preorder-preserving. It is again an additive category with all limits and
colimits.

The normed directed homology of such a complex ↑C∗ is a sequence of normed pre-
ordered abelian groups, consisting of the ordinary homology subquotients

N↑Hn: NdC∗Ab → NdAb, N↑Hn(↑C∗) = Ker∂n/Im∂n+1, (34)

with the induced norm and preorder. Similarly, we have the category of normed directed
cochain complexes NdC∗Ab and its cohomology.

When we want to forget about preorder, we take out the prefixes d, ↑. Thus, NAb
denotes the category of normed abelian groups (and contracting homomorphisms), while
NC ∗ Ab stands for normed chain complexes; their normed homology will be written as

NHn: NC∗Ab → NAb. (35)

3.3. Normed directed homology. The normed cubical set X determines a chain
complex of free normed ordered abelian groups (3.2)

N↑Cn(X) = (↑ZXn)/(↑Z(DegnX)) = ↑ZXn (Xn = Xn \ DegnX),
∂n(x̂) =

∑
i,α (−1)i+α (∂α

i x)̂ (x ∈ Xn).
(36)

As usual, x̂ is the class of the n-cube x up to degenerate cubes. Note that all degenerate
chains have norm 0, whence all representatives of x̂ have the same norm in ↑ZXn: this
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justifies the identification of the quotient with ↑ZXn, from the ‘metric’ point of view.
Therefore (as in Part I), we shall generally write the equivalence class x̂ as x, identifying
all degenerate cubes with 0. (For these classes and their chain complex, we shall avoid
the usual term ‘normalised’, which might give rise to confusion with norms.)

Also here (cf. I.2.1), the positive cone and the norm are not respected by the differential
∂n: N↑Cn(X) ��� N↑Cn−1(X), which is just a homomorphism of the underlying abelian
groups, as stressed by the dashed arrow. On the other hand, a morphism of normed
cubical sets f : X → Y induces a sequence of morphisms N↑Cn(X) → N↑Cn(Y ), which do
preserve preorder and respect norms. We have defined a covariant functor

N↑C∗: NCub → NdC∗Ab, (37)

with values in the category NdC∗Ab of normed directed chain complexes of abelian groups
(3.2). This produces the normed directed homology of a cubical set, as a sequence of
normed preordered abelian groups

N↑Hn: NCub → NdAb, N↑Hn(X) = N↑Hn(N↑C∗X), (38)

given by the ordinary homology subquotient, with the induced preorder and norm. When
we forget preorder, the normed chain and homology functors will be written as NC∗X
and NH∗X.

Extending I.2.1 with the introduction of norms, we can consider normed directed com-
binatorial (co)homology of cubical sets, with coefficients in a normed preordered abelian
group ↑L, starting from the normed directed chain complexes (cf. 3.1)

N↑C∗(X; ↑L) = N↑C∗(X) ⊗ ↑L, N↑C∗(X; ↑L) = Hom(N↑C∗(X), ↑L). (39)

Below, we only consider N↑Hn(X) = N↑Hn(X; ↑Z).

3.4. Elementary computations. This is an extension of I.2.3 to metric aspects.
Plainly, the homology of a sum X =

∑
Xi of normed cubical sets is a direct sum

N↑HnX =
⊕

i N↑HnXi of normed preordered abelian groups. It follows that, for every
cubical set X

N↑H0(X) = ↑Z.π0X, ‖[x]‖ = inf{‖y‖ | y � x}, (40)

is the free normed ordered abelian group generated by the homotopy normed set π0X
(2.4, with the norm recalled above, for generators).

N↑H0(↑sn) = N↑Hn(↑sn) = ↑Z (n > 0), (41)

with the natural norm, since an n-cycle ku (notation of 1.2) has norm |k|. On the other
hand

N↑Hn(↑on) = 2.↑dZ, (42)

with the natural norm (and discrete order). In fact, an n-chain hu′ + ku′′ (notation of
1.2) is a cycle when h + k = 0, with norm 2|h|.
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3.5. Normed homology of circles. The normed directed 1-homology group of
the normed directed circle N↑S1 and 1-torus N↑T (1.3) are easy to compute, taking into
account the length of the standard generating 1-cycle, a simple loop. Thus

N↑H1(N↑S1) = 2π.↑Z, N↑H1(N↑T) = ↑Z, (43)

with the natural norm and order. The corresponding non-directed versions NS1, NT
(1.5) yield the same norm and the coarse preorder (since both generators of the group
can be realised as 1-cycles)

N↑H1(N↑S1) = 2π.↑cZ, N↑H1(N↑T) = ↑cZ. (44)

Finally, the punctured plane R2 \ {0} (with the euclidean metric) gets the coarse
preorder and the zero ‘norm’, since the homology generator contains arbitrarily small
cycles

N↑H1(N�(R2 \ {0})) = N0↑cZ. (45)

(Of course, in all these cases, N↑H0 is the normed ordered abelian group ↑Z.)

3.6. Theorem. [Tensor products] Given two normed cubical sets X,Y , there is a
natural isomorphism and a monomorphism

N↑C∗(X⊗Y ) = N↑C∗(X) ⊗ N↑C∗(Y ),
N↑H∗(X) ⊗ N↑H∗(Y ) � N↑H∗(X⊗Y ).

(46)

Proof. Recall, from the proof of I.2.7, that we can identify the preordered abelian
groups

↑Cn(X⊗Y ) =
⊕

p+q=n ↑Cp(X) ⊗ ↑Cq(Y ), (47)

respecting their canonical positive bases, i.e. the sum of the sets Xp×Y q, for p + q = n.
This identification preserves the norm of the tensors of the basis, ‖x⊗y‖ = ‖x‖.‖y‖, and
- by the Künneth formula - induces a monomorphism in homology.

3.7. Elementary cubical tori. Also because of the previous theorem, the normed
directed homology of the normed elementary torus ↑tn = (↑s1)⊗n is expressed as in I.2.9

N↑Hi(↑tn) = ↑Z(n
i
) (0 ≤ i ≤ n), (48)

but now ↑Z is the normed ordered abelian group of integers.

4. Normed rotation structures corresponding to noncommutative tori

We compute the normed homology of the normed cubical sets NCϑ.
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4.1. Theorem. For any irrational number J , the normed homology groups of NCϑ =
(N↑R)/Gϑ (1.4) are as follows

NH1(NCϑ) = Gϑ = Z + ϑZ ⊂ R,
NH0(NCϑ) = Z ⊂ R, NH2(NCϑ) = N0Z,

(49)

(with the norm induced by the reals in degrees 0 and 1; and null in degree 2). The first
isomorphism above has a simple description on the positive cone Gϑ ∩ R+

ϕ: Gϑ → NH1(N↑R/Gϑ), ϕ(ρ) = [paρ] (ρ ∈ Gϑ ∩ R+),
aρ: I → R, aρ(t) = ρt,

(50)

where p:R → R/Gϑ is the canonical projection. (The preorder of these homology groups
has been determined in I.4.8; see 1.4.)

Proof. The algebraic part of the statement is already known from Part I: the homology
of N↑R/Gϑ is, algebraically, as claimed in (1) and the mapping ϕ in (50) is an algebraic
isomorphism (I.4.8). Moreover, the norm on NH0 is plain (3.4.1), while the one on NH2
comes from the fact that all 2-chains have norm zero.

The rest of the proof, concerning the norm of NH1, is a non-obvious enrichment of
the one of I.4.8 concerning preorder (cf. the last remark in (1.5); part of the complication
comes from the fact that, here, we cannot reduce the argument to positive chains.

First, the mapping ϕ is certainly contracting, because on the positive elements ρ ∈
Gϑ ∩ R+ we have ‖[paρ]|| ≤ ‖[aρ]‖ = ρ (and Gϑ is totally ordered). We have to prove
that it is also expansive, ‖ϕ(ρ)‖ ≥ |ρ|. To simplify the argument, a 1-chain z of ↑R
which projects to a cycle p�(z) in ↑R/Gϑ, or to a boundary, will be called a pre-cycle or
a pre-boundary, respectively. (Note that, since p� is surjective, the homology of ↑R/Gϑ is
isomorphic to the quotient of pre-cycles modulo pre-boundaries.)

Let z =
∑

i λiai be a pre-cycle. Assuming that all ai’s are different, the norm ‖z‖ in
NC∗(N↑R) and the weight |z| (introduced for the proof) are expressed as follows:

‖z‖ =
∑

i |λi|.‖ai‖, |z| =
∑

i |λi|. (51)

We will prove that z is equivalent, modulo pre-boundaries, to a pre-cycle ± aρ with
lesser norm (and lesser weight). Since each homology class in NH1(N↑R/Gϑ) has precisely
one representative of type ± paρ, the latter reaches the minimal norm in its homology class.
Thus, ‖ϕ(ρ)‖ ≥ |ρ|.

Let z = z′ + z′′, putting in z′ all the summands λiai which are pre-cycles themselves,
and replace any such ai, up to pre-boundaries, with aρi

, where ρi = ∂+ai − ∂−ai ∈ G+
ϑ ;

norm and weight can only decrease, because of possible coincidences of ρi’s. If z′′ = 0 we
are done, otherwise z′′ = z − z′ is still a pre-cycle; let us act on it. Reorder its paths ai

so that a1 has a minimal |λ1| (> 0); since ∂+a1 has to annihilate in ∂p�(z
′), there is some

index i > 1 such that:
- either ai has a coefficient λi of the same sign as λ1, and ∂+a1 − ∂−ai ∈ Gϑ; by a Gϑ-
translation of ai (leaving pai unaffected), we can assume that ∂+a1 = ∂−ai (as in the left
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diagram below) and then replace (modulo boundaries) λ1a1 +λiai with λ1â1 +(λi −λ1)ai

where â1 = a1 ∗ ai is the concatenation; norm can only decrease while weight is strictly
less: at most the previous one minus |λ1|;

• • •
a1 ai

• ••
a1

ai

�� �� �� ��
(52)

- or ai has a coefficient of opposite sign and ∂+a1 − ∂+ai ∈ Gϑ. Again, we can assume
that ∂+a1 = ∂+ai (as in the right diagram above). Then, replace (modulo boundaries)
λ1a1 + λiai with λ1â1 + (λi + λ1)ai where â1 is any increasing path from min(∂−a1, ∂

−ai)
to max(∂−a1, ∂

−ai); norm and weight behave as above.
Continuing this way, the procedure ends in a finite number of steps, because weight

strictly decreases; this means that, modulo pre-boundaries, we have changed z into an
integral combination of pre-cycles of the required form, z′ =

∑
i λiaρi

, with ‖z′‖ ≤ ‖z‖.
Now, we can replace 2aρ with a2ρ and λ.aρ with ± a|λ|ρ (modulo pre-boundaries): we

get a pre-cycle z′′ =
∑

i λiaρi
with the same norm and λi = ±1. Then, operating with

Gϑ-translation and concatenation, we get a pre-cycle z′′′ = aρ′ − aρ′′ with the same norm,
‖z′′′‖ = ρ′ + ρ′′ ≤ ‖z‖. Finally, we replace the latter with ± aρ, with norm ρ = |ρ′ − ρ′′| ≤
‖z‖.
4.2. Theorem. The normed c-sets N↑R/Gϑ and N↑R/Gζ are (isometrically) isomor-
phic if and only if Gϑ = Gζ as subsets of R, if and only if ζ ∈ ±ϑ + Z.

Proof. By Theorem 4.1, if our normed c-sets are isomorphic, also their normed groups
NH1 are, and Gϑ

∼= Gζ (isometrically). Since the values of the norm ‖− ‖: Gϑ → R form
the set Gϑ ∩ R+, it follows that Gϑ coincides with Gζ . Finally, if this is the case, then
ϑ = a + bζ and ζ = c + dϑ, whence ϑ = a + bc + bdϑ and d = ±1.

4.3. An extension. Extending the previous case (and enriching I.4.4b), take an n-tuple
of real numbers ϑ = (ϑ1, . . . , ϑn), linearly independent on the rationals, and consider the
normed additive subgroup Gϑ =

∑
j ϑjZ ⊂ R, acting freely and isometrically on the line.

(The previous case corresponds to the pair (1, ϑ).)
Again, the normed cubical set N↑R/Gϑ has a normed directed homology, isomorphic

to the normed ordered abelian group ↑Gϑ

N↑H1(N↑R/Gϑ) = ↑Gϑ = ↑∑
j ϑjZ) (G+

ϑ = Gϑ ∩ R+). (53)
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[4] A. Connes, C∗-algèbres et géométrie différentielle, C. R. Acad. Sci. Paris Sér. A 290
(1980), 599-604.

[5] A. Connes, Noncommutative geometry, Academic Press, San Diego CA 1994.

[6] M. Grandis, Directed homotopy theory, I. The fundamental category, Cahiers Topolo-
gie Geom. Differentielle Categ., 44 (2003), 281-316.
http://www.dima.unige.it/̃ grandis/Dht1.pdf

[7] M. Grandis, Directed combinatorial homology and noncommutative tori (The breaking
of symmetries in algebraic topology), Math. Proc. Cambridge Philos. Soc., to appear.
[Dip. Mat. Univ. Genova, Preprint 480 (2003).]
http://www.dima.unige.it/̃ grandis/Bsy.pdf

[8] J.C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89.

[9] F.W. Lawvere, Metric spaces, generalized logic and closed categories, Rend. Sem. Mat.
Fis. Univ. Milano 43 (1974), 135-166.
Republished in: Reprints Th. Appl. Categ. 1 (2002), 1-37.
http://www.tac.mta.ca/tac/reprints/

[10] M. Pimsner - D. Voiculescu, Imbedding the irrational rotation C∗-algebra into an
AF-algebra, J. Operator Th. 4 (1980), 93-118.

[11] M.A. Rieffel, C∗-algebras associated with irrational rotations, Pacific J. Math. 93
(1981), 415-429.

[12] Z. Semadeni, Banach spaces of continuous functions, Polish Sci. Publ., Warszawa,
1971.

Dipartimento di Matematica, Università di Genova
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