We show that every small category enriched over Sl - the symmetric monoidal closed category of sup-lattices and sup-preserving morphisms - is Morita equivalent to an Sl-monoid. As a corollary, we obtain a result of Borceux and Vitale asserting that every separable Sl-category is Morita equivalent to a separable Sl-monoid.
Keywords: Sup-lattices, Morita equivalence, separable category
2000 MSC: 18A25, 18D20
Theory and Applications of Categories,
Vol. 13, 2004,
No. 11, pp 169-171.
http://www.tac.mta.ca/tac/volumes/13/11/13-11.dvi
http://www.tac.mta.ca/tac/volumes/13/11/13-11.ps
http://www.tac.mta.ca/tac/volumes/13/11/13-11.pdf
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/13/11/13-11.dvi
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/13/11/13-11.ps