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CHARACTERIZATION OF PROTOMODULAR VARIETIES OF
UNIVERSAL ALGEBRAS

DOMINIQUE BOURN AND GEORGE JANELIDZE

ABSTRACT. Protomodular categories were introduced by the first author more than
ten years ago. We show that a variety V of universal algebras is protomodular if and only
if it has 0-ary terms e1, . . . , en, binary terms t1, . . . , tn, and (n+1)-ary term t satisfying
the identities t(x, t1(x, y), . . . , tn(x, y)) = y and ti(x, x) = ei for each i = 1, . . . , n.

1. Introduction

Protomodular categories were first introduced in [2]; their role in algebra, and various
further developments are also described in [3]-[6]. Recall that if C is a category and B is
any object in it, then Pt(B) denotes the category of points in the slice category C/B, i.e.
the category whose objects are the triples (A,α, β) in which α : A → B and β : B → A
are morphisms in C with α.β = 1B, and whose morphisms are the commutative triangles
between such points over B. When C has finite limits, any morphism p : E → B in C

determines a pullback functor p∗:

p∗ : Pt(B) → Pt(E) (1.1)

Then the category C is said protomodular when, for every morphism p, the functor p∗ is
conservative, i.e. reflects isomorphisms. Whenever C has an initial object 0, it obviously
suffices to require the functor (1.1) to reflect isomorphisms just for the initial object
E = 0. And then, if C is pointed (and so 0 = 1 in C), that requirement transforms into
the so-called Split Short Five Lemma.

In particular, the category of groups is protomodular [2]. A simple means of producing
new examples comes from the fact that every category that admits a pullback preserving
conservative functor from it into a protomodular category, is protomodular itself. There-
fore any variety of groups with additional algebraic structure (like rings and modules or
algebras over rings, etc.) also is protomodular. Thanks to the Yoneda embedding, the
same is true for the internal (such) structures in any category with finite limits (see [2]).
Moreover any protomodular category being Maltsev [3], we have immediately the second
part of the following string of inclusions, whose first part will be a consequence of our
main theorem: K1 ⊂ K2 ⊂ K3, where:
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1. K1 is the class of Varieties of algebras having 0-ary 1 and binary ◦ and \ with
x ◦ (x\y) = y and x\x = 1, see [8] and also [1].

2. K2 is the class of Protomodular varieties

3. K3 is the class of Varieties of algebras having a ternary p with p(x, y, y) = x =
p(y, y, x) (Maltsev varieties)

The main purpose of this paper is to show that protomodular varieties have itself a
syntactical characterization, namely the following:

1.1. Theorem. A variety V of universal algebras is protomodular if and only if it
has 0-ary terms e1, . . . , en, binary terms t1, . . . , tn, and (n+1)-ary term t satisfying the
identities t(x, t1(x, y), . . . , tn(x, y)) = y and ti(x, x) = ei for each i = 1, . . . , n.

Intuitively one could think of t as a “generalized multiplication” having n “divisions”
t1, . . . , tn and n corresponding “units” e1, . . . , en. We do not exclude the case n = 0,
with the variety V = {0, 1}. Indeed, in this case, the identities of the theorem reduce to
t(x) = y, whose non empty models are singletons.

Note also that we have:

t(x, t1(y, y), . . . , tn(y, y)) = t(x, e1, . . . , en) = t(x, t1(x, x), . . . , tn(x, x)) = x (1.2)

and so:
p(x, y, z) = t(x, t1(y, z), · · · , tn(y, z)) (1.3)

is a Maltsev term.
While this paper was in preparation, semiabelian categories were introduced in [6];

we repeat from [6] that a variety of universal algebras is semiabelian if and only if it is
pointed and protomodular—and that the Theorem 1.1 therefore also characterizes the
semiabelian varieties with moreover e1 = · · · = en = 0, since those are pointed.

After [6] has already appeared, the authors of [6] and of the present article have found
several papers of A. Ursini and other universal algebraists from which we have learned
the following:

• The terms and identities we are using are well known in universal algebra in the
special case e1 = · · · = en = 0 which contains the semi abelian case but not the
non pointed protomodular case. The varieties having such terms were studied by
A. Ursini in [9] under the name BIT speciale and in [10] under the name classically
ideal determined varieties.

• E. Beutler has shown that the BIT speciale varieties are the same as the so-called
C-coherent varieties (see [1], Proposition 2.3 (i) ⇔ (iii)), from which (in the pointed
case, and once the concept of protomodular category is introduced !) our main result
easily follows.

On the other hand, the referee suggested to us to mention also the related work of K.
Fichtner [7].
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2. Protomodularity in algebraic language

Let V be a variety of universal algebras. Consider a diagram in V of the form:
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(2.1)

where:

• f : (A′, α′, β′) → (A,α, β) is a morphism in Pt(B);

• p : E → B is any morphism in V ;

• other horizontal arrows are the appropriate pullback projections;

• the left hand triangle represents the image p∗(f) of f under the pullback functor
(1.1).

The definition of protomodularity says: V is protomodular if for each such diagram we
have, for any map f : A′ → A :

p∗(f) is an isomorphism ⇒ f is an isomorphism (2.2)

Let us begin by the following:
Observation: (a) Since the category V is exact, it is sufficient to require (2.2) only when
f is a monomorphism. Indeed, applying this weaker requirement first to the diagonal
A′ � A′ ×A A′ and then to f itself, we obtain:

p∗(f) is an iso ⇒ p∗(A′ � A′ ×A A′) is an iso ⇒ (A′ � A′ ×A A′) is an iso

⇒ f : A′ → A is a mono ⇒ f is an iso

where the first implication holds because p∗ preserves pullbacks.
(b) Again, since V is exact, the implication (2.2) automatically holds when p is a

regular epimorphism (= surjective map). Therefore requiring (2.2) we may also assume
that p is a monomorphism.

(c) Since the free algebra A[∅] on the empty set is the initial object in V , it is sufficient
to require (2.2) for E = A[∅]. Moreover, (b) tells us that we can replace A[∅] by its image
C in B, which of course is the subalgebra in B generated by all constants.

Since monomorphisms in V are nothing but subalgebra injections (up to isomorphism),
we obtain the following proposition, in which (1) ⇔ (2) follows from our Observation while
(2) ⇔ (3) is obvious:
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2.1. Proposition. The following conditions on a variety V of universal algebras are
equivalent:

1. V is protomodular.

2. Let B ⊂ A′ ⊂ A be in V (the inclusions are of course supposed to be homomor-
phisms), α : A → B a homomorphism with α(b) = b for each b ∈ B, and K the
inverse image under α of the subalgebra in B generated by all constants. If A′

contains K, then A′ = A.

3. Let A be in V, B a subalgebra in A, α : A → B a homomorphism with α(b) = b for
each b ∈ B, and K the inverse image under α of the subalgebra in B generated by
constants. Then A is generated by B and K.

3. Proof of Theorem 1.1.

Suppose there are e1, . . . , en, t1, . . . , tn, t as in the formulation of Theorem 1.1. In order
to prove that V is protomodular, we will prove 2.1(3)—essentially by repeating a simple
argument, well known for groups. For an arbitrary element a ∈ V, we have:

a = t(α(a), t1(α(a), a), . . . , tn(α(a), a))

and since:

α(ti(α(a), a)) = ti(α(a), α(a)) = ei,

the element ti(α(a), a) is in K, for each (i = 1, . . . , n). Therefore a belongs to the
subalgebra generated by B and K, as desired.

Conversely, suppose V satisfies the condition 2.1(3). We take:

• A = A[x, y], the free algebra in V on two generators x and y;

• B = A[x] = the subalgebra of A generated by x;

• α : A → B the homomorphism defined by α(x) = α(y) = x.

Then since the algebra A is generated by B and K, and B is generated by x, the element
y can be presented in A as:

y = t(x, k1, . . . , kn)

for some k1, . . . , kn in K and (n+1)-ary term t. Moreover, since K is a subalgebra in
A[x, y], there exist binary terms t1, . . . , tn with ki = ti(x, y) for each i = 1, . . . , n. And
furthermore, since all ti(x, x) = α(ti(x, y)) = α(ki) belong to the subalgebra in A gener-
ated by constants, there exist 0-ary terms e1, . . . , en with ti(x, x) = ei for each i = 1, . . . , n.
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