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CATEGORIES AND GROUPOIDS

P. J. HIGGINS

Preface to the TAC Reprint

In 1968, when this book was written, categories had been around for 20 years
and groupoids for twice as long. Category theory had by then become widely
accepted as an essential tool in many parts of mathematics and a number
of books on the subject had appeared, or were about to appear (e.g. [13,
22, 37, 58, 65]!). By contrast, the use of groupoids was confined to a small
number of pioneering articles, notably by Ehresmann [12] and Mackey [57],
which were largely ignored by the mathematical community. Indeed groupoids
were generally considered at that time not to be a subject for serious study. It
was argued by several well-known mathematicians that group theory sufficed
for all situations where groupoids might be used, since a connected groupoid
could be reduced to a group and a set. Curiously, this argument, which makes
no appeal to elegance, was not applied to vector spaces: it was well known that
the analogous reduction in this case is not canonical, and so is not available,
when there is extra structure, even such simple structure as an endomorphism.
Recently, Corfield in [41] has discussed methodological issues in mathematics
with this topic, the resistance to the notion of groupoids, as a prime example.

My book was intended chiefly as an attempt to reverse this general as-
sessment of the time by presenting applications of groupoids to group theory
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and topology which would make clear the advantage and elegance of groupoid
methods. As it happened, between the writing of the book and its publication
(which was delayed by a takeover of Van Nostrand Reinhold) Serre’s notes
[24, 67] on groups acting on trees appeared. They included proofs of the sub-
group theorems of Schreier and Kurosh which in spirit were very similar to
the groupoid proofs in Chapter 14 of my book but were perhaps more easily
assimilated by group-theorists because they involved less preliminary work.
As a result, the acceptance of groupoids as a useful tool in group theory was
further delayed. (In 1976, I gave in [49] an account of the Bass-Serre theory
using the notion of the fundamental groupoid of a graph of groups, and this
work has been followed up recently in Emma Moore’s thesis [63]).

As a graduate student in Cambridge in the early 1950’s, I was much influ-
enced by Philip Hall’s lectures on Group Theory and on Universal Algebra;
these topics were combined in my thesis and in [47]. T knew a little about
groupoids at this time but did not pursue them until 1959 when, listening to
an exposition of the topological covering space proof of the Schreier subgroup
theorem, I realised that the loops at a point, when lifted to the covering space,
formed a category, and that the fundamental group lifted to a groupoid. It
was then clear that the topology was irrelevant to the proof, or at least it
could be reduced to combinatorics by using covering morphisms of groupoids
instead of covering maps of spaces. The proof worked because the theory of
presentations of groups generalised easily to presentations of groupoids, using
generating graphs instead of generating sets. Maria Hasse [15] had the same
idea at about the same time. A simple proof of Kurosh’s Theorem also came
from the same method but, in writing up these results, I was conscious of the
ad hoc nature of some of the arguments concerning free groupoids and presen-
tations of groupoids. The beautiful results of Hall’s universal algebra could
not be used in this context because the operations in categories and groupoids
were not everywhere defined.

To overcome this difficulty and to put the groupoid work on a sound foun-
dation, I set about generalising the Hall-Birkhoff theory so as to include a
class of “many-sorted” algebras. These algebras with a scheme of operators
were essentially partial algebras defined on a family of sets, in which the do-
mains of the operators were specified in advance by combinatorial data. They
included categories and groupoids as well as such classes as modules over vari-
able rings, graded algebras, directed systems of algebras etc. I lectured on
this theory (and its application to categories) at the 1961 British Mathemati-
cal Colloquium and published the results in [48]. This work was later applied
by Birkhoff and Lipton, under the name “heterogeneous algebras”, [30], to
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the theory of automata and state machines, and is still used in that area.
Lawvere’s ground-breaking work [52] on algebraic theories, introducing cate-
gorical methods to the study of general abstract algebra, (the reverse of what
I had done) appeared at about the same time as [48]. An amalgam of the
two approaches was contained in Benabou’s 1966 thesis [29], and this line of
development was continued by many authors using such terms as algebraic
categories, equationally defined categories, monads and triples (e.g. [28, 38,
42, 43, 53, 54, 55, 61]). Eventually the theory encompassed all reasonable
algebraic systems, and certainly all those I have worked on over the years
(Lie structures over modules, cubical complexes with connections, multiple
groupoids, crossed complexes etc.).

The origin of the present book lies, as mentioned in the original Preface, in
my visit to the University of Michigan for the year 1966/67. My papers [16] and
[17] giving the applications of groupoids to the Schreier and Kurosh theorems,
and to a generalisation of Grushko’s theorem, had recently appeared, and I
was asked to lecture on them. The result was a graduate course whose first
semester was on universal algebra and whose second was on categories and
groupoids. Perhaps mistakenly, I decided in conjunction with the Editors,
that the material of the second semester was more suitable than the universal
algebra for the VN Mathematical Studies. I felt that preliminaries should
be kept short, and in any case P.M. Cohn had just published a book [39] on
universal algebra. So, instead, I included specific theorems on the existence of
right limits and left adjoints as the basis for the work on groupoids and rounded
them off as best I could to give a short account of the category theory that
I needed to use. The book was not intended as a systematic exposition of
category theory; its title was chosen partly to make sure that the groupoids in
the title were not mistaken for groupoids in the sense of Bruck (a usage which
was more common at that time and led to many mis-classifications of papers
in Mathematical Reviews!).

In spite of the omission of the universal algebra section of my course,
there are two things the book does owe to Philip Hall’s lectures. The first is
the influence of his general philosophy of algebra, especially the importance
of universal properties and word problems. The second is more tangible: the
book is written using almost exclusively a right-handed notation for operators,
mappings and multiple operations. This was the notation used by Hall in his
lectures and many of his students adopted it in at least part of their work. I
used it in the first semester of my course and therefore also in the second. It
was at that time the most natural notation for me, and there were a number
of mathematicians, mostly algebraists, who were trying to get it adopted as
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standard. So I decided to stick with it for the book. (Regrettably, the right-
hand campaign was not successful, but the notation re-emerges from time to
time when individuals discover its great advantages for themselves.)

The proofs of the Schreier and Kurosh subgroup theorems in Chapter 14
are still, I think, as simple as any in the literature. This chapter also contains
a broad generalisation of Grushko’s theorem which seems to be not very well
known (see Theorem 12, p.123); its proof is along similar lines. In Chapter 15
the same method is applied to colimits of groups rather than free products, and
weaker results hold in this case. In particular, there is a conceptual form of the
theorem of Reidemeister and Schreier deriving a presentation of a subgroup
from a presentation of the containing group (see Theorem 14, p.136). The
case of subgroups of amalgamated free products of groups, first studied by
Hanna Neumann in [64], is discussed at the end of this chapter and a mistake
on this topic in my paper [16] is avoided, giving a correct form (I hope!) of
the corresponding subgroup theorem.

Chapter 16 on homology of groupoids can now be seen as related to
Grothendieck’s important notion of simplicial nerve of a category or groupoid.

The notion of free product with amalgamation of groupoids in [16] strongly
influenced Ronnie Brown to introduce in [5] the fundamental groupoid on a
set of base points, and so to give a van Kampen theorem for unions of non-
connected spaces which allowed the direct deduction of the fundamental group
of the circle, and more. This result appeared too late to be included in the
course, but I added a final Chapter 17 giving a version of it. It was indeed just
the sort of application I had been hoping for — an indication that groupoids
were useful outside algebra. (I was not so aware at the time of the extensive
work of C. Ehresmann on groupoids in differential topology and geometry.)
The reason that groupoids were successful in this case was that they modelled
the geometry of paths more closely than the standard groups: restriction to
groups required the introduction of a single base-point, the choice of which
often had no geometric justification. It is unwise to force the geometry into a
particular mode simply because that mode is more fashionable.

Following discussions with Brown on his van Kampen theorem and on the
result in [35] that double groupoids with connections and one vertex are equiva-
lent to crossed modules over groups, Brown and I embarked on a programme of
constructing higher homotopy groupoids in order to prove higher-dimensional
versions of the van Kampen theorem which would yield non-Abelian informa-
tion not available by standard group methods. The plan was to study the
maps of n-cubes into a space (which have natural operations of gluing, subdi-
viding and collapsing etc.), to determine the algebraic structures which best
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describe the properties of these cubes, and their homotopy classes, and then
to try to use these algebraic models to compute homotopical information in all
dimensions. This collaboration with Brown (involving in this area 11 papers,
1974-2003) and with various students and fellow workers broke new ground
in “higher-dimensional algebra” and its applications to topology. A compre-
hensive account of our main body of work is in preparation in [34]. Brown’s
correspondence on this area in 1982 with Grothendieck stimulated the lat-
ter to writing the increasingly influential ‘Pursuing Stacks’ [46], which makes
good use of groupoids, and is basically in search of non-Abelian homological
algebra.

In order to prove these higher dimensional van Kampen Theorems we
needed not only to develop a new range of appropriate algebra but also to
resort to a different style of proof, avoiding the global retraction argument
used earlier by both of us. Consequently, the higher dimensional van Kam-
pen theorem we proved in [33] specialises to a van Kampen theorem for the
fundamental groupoid 71 (X, A) when X is any union of open sets, solving the
problem mentioned on p. 165 of this book. The most precise version for the
required connectivity conditions is in [36].

From the late 1980s I was involved in work with Kirill Mackenzie, whose
innovative and influential book [56] introduced me to the fascinating world
of Lie groupoids and Lie algebroids initiated by C. Ehresmann in the 1950s
and by J. Pradines in the 1960s. See in particular [50, 51] for our algebraic
contributions to this topic. (Lie groupoids and other species of groupoids with
structure are now, of course, studied under the general heading of internal
groupoids in categories with pull-backs).

The progress of groupoids in the last 30 years has been remarkable. I have
summarised above my own contribution to this progress, but cannot do justice
here to the many others who have taken part. A ‘brief survey’ on groupoids
up to 1987 is given in Brown [32], with 160 references as an entry to the
literature. A web search today for groupoids in geometry, analysis, computer
science, or physics, yields thousands of ‘hits’ in each area. Notable examples
are the far-reaching generalisations of Galois theory made possible by the use
of groupoids [31, 60], and the non-commutative geometry initiated by Connes
[40], with its use of the C*-algebra of a measured groupoid. Other examples
will be found in the sample references given below (see [44, 45, 59, 62, 66,]).

I would like to thank the Editors of Theory andApplication of Categories for
suggesting this reprint, and Ronnie Brown, Bill Lawvere and George Janelidze
for helpful comments on a draft of this Preface. I hope my observations and
reminiscences will be interesting to current readers. All the misprints and mis-
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takes in the book of which I am aware have been corrected by pasting before
the book was scanned. Any errors that remain are entirely my responsibility,
but I hope they are few.

Philip Higgins
Durham, England
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Preface

These notes are based on lectures given at the University of
Michigan in 1967. Their aim is to present a self-contained account
of the elementary theory of groupoids and some of its uses in group
theory and topology. Category theory appears as a secondary topic
whenever it is relevant to the main issue, and its treatment is by no
means\systematic. However, the book may serve as an introduction
to categorical algebra with the emphasis always on specific
applications.

One of my hopes in preparing the text was to convince students
of group theory that it is often profitable to cross the boundary
between groups and groupoids. The main advantage of the transition
is that the category of groupoids provides a good model for certain
aspects of homotopy theory. In it there are algebraic analogues of
such notions as path, homotopy, deformation, covering and fibration.
Most of these become vacuous when restricted to the category of
groups, although they are clearly relevant to group-theoretical
problems. This extra freedom is exploited in Chapters 14 and 15 to
prove various sub-group theorems in the context of groupoids. There
is another side to the coin: in applications of group theory to other
topics it is often the case that the natural object of study is a
groupoid rather than a group, and the algebra of groupoids may pro-

vide a more convenient tool for handling concrete problems. This
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point is illustrated in Chapter 17, where groupoids are used to
compute fundamental groups. I hope that other applications will
occur to the reader and that he will find the basic machinery he

needs for them in these pages.

London, 1970. P. J. HIGGINS
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CHAPTER 1

Some basic categories

A category X consists of (i) a collection of objects 4, B, C, ...,
(ii) a family of disjoint sets K (4, B), one for each pair (4, B) of
objects, (iii) a distinguished element e, of K (4, A) for each 4, and
(iv) a law of composition: if 0 eX (4, B) and ¢ X (B, C) then
0 eX (4, C); otherwise 0 is not defined. The members of X (4, B)
are called K-morphisms or K-maps from A to B, and we write
6:4 —Bor AZ B instead of 6 eX (4, B) if it is clear from the
context what category X is intended. The special element €, is
called the identity morphism on A.
There are two axioms:

1. Associativity: if A& BBCED, then ()¢ = O ().

2. Identity : if A% B then €0 =0=0cp.

If K and £ are categories, then a functor F: K-8 assigns to
each object 4 of X an object F(A) of £, and to each K-morphism
a: A—-B an Sf-morphism F(a) : F(A)—F(B), in such a way that
F(c,) = ey, for each A, and F(af) = F()F(B) whenever 4 3B 5, C.

The most familiar examples of categories are the concrete
categories in which the objects are sets and the morphisms are
certain mappings between them; composition is ordinary composition
of mappings, and ¢, is the identity mapping on A. Usually the sets
are provided with some extra structure (of a given type) and the

morphisms are all the structure-preserving maps. Thus one has the

1
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category of rings and ring-homomorphisms, of topological groups and
continuous homomorphisms, etc. Functors then arise naturally as
“‘canonical constructions’’; for example the following constructions
all yield functors between the appropriate categories : (i) the
integer group-ring Z (G) of a group G; (ii) the free group F(X) on a
set X; (iii) the fundamental group 7 (T, %) of a topological space

(T, ) with base-point. (Note, however, that the centre of a group
and the automorphism group of a group are not functorial construc-
tions; always check what happens to the morphisms!)

The bulk of category theory aims at providing general theorems
with applications in concrete categories (or in similar ones whose
objects may be more complicated mathematical structures and whose
morphisms may be, for example, families of mappings). Theorems of
this type which appear in these notes will be concerned with such
categorical notions as products, direct limits and adjoint functors,
which describe in abstract terms some of the standard constructions
occurring in many differént branches of mathematics.

From a slightly different point of view one may also regard a
category as an algebraic structure in its own right, on the same
footing as a group or a semigroup. The ‘‘elements’’ of this algebra
are the morphisms, and their composition is an associative partial
binary operation; the objects act as labels for the morphisms in order
to determine the domain of the operation. Functors are now to be
thought of as structure-preserving maps, i.e. algebra homomorphisms.

In the extreme case of a category with just one object, any two

morphisms can be composed and the resulting algebra is a semigroup.

Thus ‘‘category’’ is a direct generalisation of ‘‘semigroup-with-1"".
This algebraic view-point emphasises different aspects of category

theory and leads to the consideration of such algebraic notions as
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congruences on a category, generators and relations for a category,
free categories and word problems.

These two approaches to category theory will be developed
side by side and will sometimes impinge on each other. For example,
in the applications to group theory, categories will enter in both
roles. A group G can be thought of as a category with one object
whose morphisms are the elements of G. (This strain on the
imagination is more fruitful than it appears at first sight; it is, in a
sense, a reversion to the idea of a group of transformations). On
the otherhand, G is itself one of the objects of a category Ql whose
morphisms are group homomorphisms. To avoid confusion in such
situations we shall adopt a duplicate set of notations. When we are
treating categories as abstract algebras we shall denote them by
A, B, C, ..., and their morphisms by &, b, x, y, ..., the same
notation as we use for groups and their elements. (The objects of
such categories will only appear as suffixes attached to these
symbols.) Algebra homomorphisms (functors) will be denoted by
a, B, v, ... in this notation, and they will be written as operators on
the right. At other times, when we want to consider arbitrary cate-
gories (including ‘‘large’’ ones such as the category of all groups),
we shall denote them by @, R, @, ..., their objects by 4, B, C, ...
and their morphisms by a, 8, ¥, ... . We shall speak of categories
and Categories, respectively, in these two contexts. The two
notations occur simultaneously when the categories 4, B, C, ... are
objects of the Category C.

This informal distinction also serves as a set-theoretical
warning. The reader can choose his own favourite set theory: if he
likes to distinguish between sets and classes, he will interpret

<

“‘category’’ (with a small c) to mean ‘‘small category’’, that is, one
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whose objects form a set; if he prefers to work with a hierarchy of
universes he will interpret all categories as belonging to some fixed
universe, but he may have to move to a larger universe when
Categories appear.

We reserve special symbols for four Categories which will
occur frequently.

1. The Category S of sets. The objects of S are sets and
S(A, B) is the set of all maps from 4 to B. Composition is the
usual one, and ¢, is the identity map on A.

2. The Category D of directed graphs. A directed graph A
consists of (i) a set V = V(A) of vertices, (ii) a set E = E(A) of
edges, and (iii) an incidence map 6 : E—V x V. If 0 sends the
edge x to the pair x6 = (x31, xﬁz), we call x51 the source of x,
and x82 the target of x. All graphs in these notes will be directed,
and we call them simply ‘‘graphs’’.

A graph-map 0 : A— B is a pair of maps V(0) : V(4)— V(B) and
E(0) : E(A)— E(B) which preserves incidences, i.e. such that
(x E(6) )51‘ = (x5i) V(0 (i =1,2) for all edges x of A. The category
D has as its objects all (directed) graphs, and 9D (A, B) is the set of

all graph-maps from A to B Composition in D is the obvious one

obtained by composing the vertex maps and the edge maps separately.

€, consists of the identity maps on V(A) and E(A).
We shall draw the usual pictures of graphs in which vertices are

represented by points in the plane and edges by arrows from source

to target. Since the vertices serve mainly as pegs to hang the

edges on, we also adopt a notation in which they appear as labels.

Writing I for V(A), we let Ai], denote the set of edges from 1 to j

(that is, x € AI.J. <=>x06=(1,j)). Thus E(A) is the disjoint union

of sets Aij (i,j €I), and we write x : 1—j or 1 %] for x eAij.
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3. The Category C of categories. Any category has the
structure of a directed graph with the objects as vertices and the
morphisms as edges. In addition, the set of edges has a partial
multiplication whose domain is determined by the graph structure.
We may therefore make the following redefinition. A category 4 is
a graph (with vertex set I and edge set UAI,], as above), together
with multiplications Ai], X A],k — Aik for all 1, j, k € I, and distin-
guished edges e € Aii (1 €I). The product xy of edges is defined
if and only if the source of y is the target of x. Multiplication is
associative: ((xy) z = x(yz) whenever one, hence the other, product
is defined), and the e, are identity elements (ei X=X=Xe for
X € Aij)‘ In particular, each A“ is a semigroup-with-1, the vertex
semigroup at 1.

A category-map is a graph map 0 : A — B between categories
which preserves products and identity elements; in other words it is
a functor from A4 to B. The Category C has as its objects all
categories, and C (4, B) is the set of all category-maps from 4 to B.
Composition in C is the same as in 7.

4. The Category § of groupoids. A groupoid A is a category

in which every edge (morphism) is invertible; that is, every x € Aij

1 1

has an inverse x ™' € Aji with xx™ = e, and x'x = e In particular,
each A.. is a group, the vertex group at i. If A and B are groupoids,
a groupoid-map 0 : A— B is just a category-map from A to B. Such
a category-map automatically preserves inverses; indeed in the
presence of inverses one need only assume that 6 preserves
products. The Category G has as its objects all groupoids, and
Q(A, B) is the set of all groupoid-maps (functors) from A to B.

We have given these four Categories in order of increasing com-

plexity of their objects, and we obtain ‘‘forgetful’’ functors
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CHNCIN]) by successively thinking of a groupoid as a category, and
then merely as a graph. We also have two forgetful functors

V, E : £ -3 which assign to each graph-map 0 its vertex map V(6)
and its edge map E(6)). By abuse of notation we shall also use V, E
to denote the obvious composite forgetful functors from C to & and
from  to d.

Useful variants of these Categories are the Categories {DI’ @I'
QI whose objects are all graphs (resp. categories, groupoids) with
fixed vertex set I and whose morphisms are all those graph-maps
(resp. category-maps, groupoid-maps) which leave all vertices fixed.
We refer to I-categories, I-maps, etc. In particular, if I has just one
member we obtain @_1, the Category of semigroups-with-1 and 91’
the Category of groups. @1 is indistinguishable from 3.

In all the above Categories one has obvious notions of sub-
object, injection and surjectiont. A morphism 8 : A—B in P, Cor
Q is an injection (resp. surjection) if both V(6) and E(6) are injec-
tions (resp. surjections) in O. Clearly 0 is an isomorphism (i.e. is
invertible in the appropriate Category) if and only if it is both an
injection and a surjection. The same applies to @1, GI’ Ql. If A
and B are two objects of one of the Categories .(D, G, 9 .(D‘,, Gl or
QI' we say that A is a.sub-object (sub-graph, [-subcategory, etc.)
of Bif ACB (i.e. V(A) C V(B) and E(A) C E(B)) and the two
inclusion maps form a morphism of that Category. We shall also
speak of subgraphs of a groupoid, subgroupoids of a category, etc.

in the obvious sense (apply a forgetful functor to one of the two

Tlnjection and surjection must not be confused with monomorphism and
epimorphism which are defined in an arbitrary Category a as follows.
a: A— B is a monomorphism in-@ if, for all B, Yy: C—Ain @, Ba =ya
implies ,8 =Y. It is an epimorphism in Cf if, for all 6,)/ :B—Cin @,
aB = ay implies B =Y. (See exercise 5 below).
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objects). Thus a subgroupoid A4 of a category B is the same thing
as a subcategory whose edges are all invertible (in A). A is a full
subgraph of the graph B if it is obtained from B by selecting a set of
vertices of B and including all edges of B whose source and target
are both in this set (i.e. if Aij = Bi]. for all 1,j € V(A)). A full sub-
graph of a category (groupoid) is always a subcategory (subgroupoid).
Note: In a category or groupoid A, the vertex set V(A) is essen-
tially determined by the edge set E(A) and the multiplication. (For
the identity elements e are characterised by the property ‘‘ex = x,
ye = y whenever the products are defined’’, and there is just one at
each vertex). It is therefore reasonable to think of A as a set of
edges with multiplication and to write 4 for E(A), 4 =UA1.]., x €A
(where x is an edge) etc. Similarly if 6 : A— B is a category-map
we may think of 6 as a map of edge sets only and write 8 for E(0).
With graphs, more care is required since there may be isolated
vertices, and such notations would be inadmissible.

If 6: A— B is a graph-map, we denote by A0 the image of 4
i.e. the subgraph of B formed by the images of the vertices and
edges of A.
WARNING: if 6 : A— B is a category-map (or groupoid-map), the
image A0 is not usually a subcategory (or subgroupoid) of B. (See
exercise 1 below). We shall therefore usually be more interested in
the subcategory or subgroupoid of B generated by A6, which is
defined as follows. If A)‘()\ € A) are subgraphs of a graph B, their
intersection A = ﬂA is the subgraph with V(4) = ﬂ V(A ) and
E(A) = ﬂ E(AA) If B is a category, and each AN 1s a subcategory
then the1r intersection is also a subcategory. Hence, for any sub-
graph X of a category B we may define cat {X}, the subcategory
generated by X, to be the intersection of. all subcategories contain-

ing X. Similarly if X C B and B is a groupoid, gpd {X} denotes the
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smallest subgroupoid of B containing X. Clearly X C cat {X} C
gpd {X} in this case.

PrRoPOSITION 1. If0:A—Bis a category-map (groupoid-map)
and if its vertex map V(0) is an injection, then the image A0 is a
subcategory (subgroupoid) of B. In particular, this is true for all

morphisms of GI and 91.

Proof. Let b= af, b' = a'6 be edges of A6. If bb' is defined in-
A6, then b82 =b'd,, so a52 = a‘81 because of the condition on the
vertex map. Hence bb' = (aa') 6 € AG and A6 is closed under the

product in B. Also A0 contains the identity element at each of its

vertices and, if A is a groupoid, contains inverses of all its edges.m

PROPOSITION 2. If the category (groupoid) A is generated by the
subgraph X, then any category-map (groupoid-map) 0 is uniquely

determined by its restriction to X.

Proof.  The set of vertices and edges of 4 on which two
category-maps agree is a subcategory of A. If two such maps agree
on X they must therefore agree on the whole of A. The same argu-

ment works for groupoids. B

To illustrate some of the ideas introduced above we take a
simple but important example. Let I be any set and consider the
graph A(I) whose vertex set is I and whose edge set is [ x I (with &
the identity map on I x I). A(I) has exactly one edge (i,j) from i to j
for any i,j €I, so there is a unique way of defining a category
structure on A(I), namely by the rule (1,j) (j,k) = (i,k). The edges
(1,7) are the identity elements, and (j,7) is inverse to (i,j). Thus
A(l) is a groupoid which we call a simplicial groupoid, and we shall

always think of A(I) as carrying this structure. For any map
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o : -], there is a unique groupoid map A(l) — A(J) with o as its
vertex map, and we see that A is a functor from S to G A subgraph
of A(I) is essentially a binary relation on a subset of [; a sub-
category of A(l) is a pre-ordering on a subset of I; a subgroupoid of
A(l) is an equivalence relation on a subset of I. A full subgroupoid
of A(D) is a groupoid A(J); an I-subgroupoid of A(l) is an equivalence
relation on I.

We observe that if A is any I-graph, there is a canonical graph-
map 6* : A— A(l) given by the identity map on vertices and the
incidence map 6 : E(A)—1I x I on edges. If A is a category (groupoid)
then 8* is a category-map (groupoid-map) and AS* is a subcategory
(subgroupoid) of A(I) by Proposition 1. We call a graph A unicursal
if there is at most one edge from 1 to j for each pair of vertices 1,j.

If A is a unicursal graph (category, groupoids), then 8* is an injec-
tion, and A is isomorphic with a subgraph (subcategory, subgroupoid)
of A(l). In particular, any groupoid (or category) with exactly one
edge from i to j for each pair of vertices 1,j is isomorphic with A(l),

and we refer to all such groupoids as simplicial groupoids.

Exercises

1. Construct a groupoid map 6 : A— B such that A0 is not a sub-
category of B.

2. Let X be a subgraph of the category A. Show that a € cat {X}
(a an edge of A) if and only if either
(i) a= e, for some vertex 1 of X

or (ii) a=x; x, ... x_ for suitable edges x,, x,, ..., x, of X.

State and prove the corresponding result for groupoids.
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3. Show that if 6 : A—B is a groupoid map, then the subcategory
of B generated by A6 is a subgroupoid.

4. Let G be a groupoid. Show that the lattice of subgroupoids of
G is a sublattice of the lattice of subcategories of G. (Note that
these two lattices are not in general sublattices of the lattice of

subgraphs of G, so there is something to prove).

5. Show that in the Categories € and Q, monomorphisms are the
same as injections. Show also that in € or G, if0: A>Bisa
morphism such that A6 generates B (as category or groupoid, re-
spectively) then 6 is an epimorphism. In § the converse is true,
but is harder to prove. In C the converse is false; find a counter-

example.

CHAPTER 2
Natural equivalence and adjoint functors

Let &, B be Categories, and let F, G be functors from {to B.
A natural transformation 7 from F to G (write 7 : F —G) is a family
of B-morphisms 7(A4): F(A), one for each object 4 of ({, with the
property that, for every @-morphism a: A — A2, the following dia-

gram commutes:

7(A))
G(4y)

F(Al)

F(a) G(a)

r(Az)
F(Az) _— G(Az)

Note. A diagram of objects and morphisms of a Category B is
called commutative if, whenever two morphisms are obtained by
composing morphisms in the diagram along different routes between
the same pair of endpoints, the two morphisms are equal. If the
diagram is a subgraph X of B (that is, if no object or morphism
occurs more than once in the diagram), this condition says that the
subcategory of B generated by X is unicursal (see p.9, Exercise 2).
In general, a diagram in B is defined to be a graph-map 6 : X —»%B
for some (directed) graph X, and such a diagram is called
commutative if there exists a unicursal category C, a graph-map
9,: X—C, and a category-map 0, : C—P with 6, 6,=0(See p.21,

Exercise 1, and p.30, Exercise 1).

11
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If H: @—% is another functor and 0 : G—H a natural trans-
formation, one obtains a composite natural transformation 70 : F—H
by setting (7o) (A) =7(A)o(A) : F(A)— H(A). With the obvious defi-
nition of the identity transformation F — F one therefore obtains a
Category 93@ whose objects are all the functors from ( to B and
whose morphisms are all Tthe natural transformations between them.
A natural equivalence r: F — G is an invertible morphism of 53@
and it is easy to see that this is the same thing as a natural trans-
formation 7 such that 7(4) : F(A)—G(A) is an isomorphism (in B) for
all A. F and G are called naturally equivalent functors if there

exists such a 7, and we write F = G.

Examples. 1. The classical example, and one of the origins of
category theory, concerns the second dual F(A) of a finite dimen-
sional vector space A4 over a field K. If O is the category of such
spaces and their linear maps, then F defines a functor from O to O.
The standard isomorphism F(A4)— A for each 4 gives a natural
equivalence F — 1 (where 1 is the identity functor on O) and it is
the existence of this natural equivalence which enables one to
identify A with F(A) for most purposes.

2. For any set X, let F(X) denote the free group on X and
G(X) the free Abelian group on X. Then F and G define functors

functors from & to G., and the canonical homomorphisms F(X)— G(X)

1
form a natural transformation F — G.

3. For any directed graph 4, let E(A) be its set of edges and
let F(A) = V(A) x V(A), where V(A) is its set of vertices. Then E
and F define functors from 9 to & and the incidence maps

0(A) : E(A)— F(A) form a natural transformation & : E—F.

T‘Here one may have to pass to a higher universe or restrict @ to be a small

category. In the applications Cf will always be suitably small.
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Two Categories (@ and B are isomorphic (@ = B) if there exist
functors F: @B and G : B—Q such that F o G = 1 and
Go F =13. (Since we are writing functors on the left F o G
denotes ‘‘first G, then F’’. The symbol o signals departure from our
usual practice of composing maps the other way round). F and G
are then isomorphisms of Categories. If, instead, one has only the
weaker conditions F o G =~ 1 and G o F ~ 1 (natural equivalence of
functors), one says that F and G are equivalences of Categories,
and @ and B are equivalent (& = B). In most applications of Cate-
gory theory one does not need to distinguish between equivalent
Categories since the properties of greatest interest are preserved
under equivalence. By the same token, naturally equivalent functors
can be identified for most purposes. However, in the algebraic
theéry of categories there are interesting properties not preserved
under equivalence, In fact, our main theme is the proposition that
groupoids are often more useful than groups even though every
groupoid is equivalent to a family of groups. For groupoids, the
distinction between isomorphism and equivalence is, as we shall
see, closely analogous to the distinction between homeomorphism
and homotopy equivalence of topological spaces.

The following are some useful examples of isomorphisms of
Categories.

1. If @ and B are Categories, we define the product Category
( x B in the obvious way. The objects are all pairs (4, B), where A
is an object of (, and B is an object of B. The morphisms from
(A{,B}) to (A,,B,) are all pairs (a, B), where a € @ (A;,4,) and
BeB (B,B,). Composition is defined by (a, B)(a', B') = (aa', BB,
and €, py= (e4,¢g). Clearly AxB =% x{, and
(&1 X @2) X @3 = @1 X (@2 X 83). Further, the product @1 x @2 has
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“the usual universal property : any pair of functors (Fy, Fy, F;:
fB—»@i gives rise to a unique functor F : 53—»@1 X @2 which, when
composed with the projection functors @lx @2—+@1 and @lx @24@2
gives back the functors F, and F,. This fact may be stated as an
isomorphism of Categories (C‘fl X @2)% = @‘({3 X @%3, which requires
some verification as regards the morphisms of the Categories (which
are natural transformations). We leave this to the reader, who

should also convince himself that

B, <P B, B,
@1 22 (@ H 22 (@ Z)Q3 1 All these isomorphisms are

canonical (in a sense which would have to be described by natural
transformations in a higher universe) and we shall use them to
identify the Categories in question.

2. 1fQis any Category, we define the dual or opposite
Category (I°P as follows. The objects AP of P are in one-one
correspondence with the objects 4 of . The morphisms
6°P : A°P _, BOP are in one-one correspondence with the morphisms
0: B— A, and the composition is defined by 6°P °P - (¢6)°P.
(One can, for example, take the objects and morphisms of ( itself
with the oppositely oriented graph structure and the opposite multi-
plication, but this is liable to lead to confusion). There are

canonical isomorphisms ({°P)°P = @, (@°P x BOP) = (@ x B)°P and

op op
(@or )93 = (&B) . The reader should check the last of these to

see that the natural transformations go in the right direction.

. op

The objects of @‘% (functors from BOP to &) are called
contravariant functors from B to &. They can be thought of as maps
from B to @ which reverse the graph structure and the multiplication,

i.e. anti-homomorphisms. The usual notation encourages this
attitude: we write F : B —{, and F(B: F(B,)— F(B,), where
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B: B,— B in $. Natural transformations between such functors

“(B, which

are defined as morphisms in ﬁgop (not morphisms in ({°P)
go the other way). The objects of @% should now be renamed
covariant functors, but we shall not often use this term; functors

are always covariant unless otherwise stated.

There are other extensions of this terminology. For example, a
functor F : @°P x B & is described as a functor of two variables,
contravariant in the first and covariant in the second. If a e@(Az,Al)
and 8 € B(B,, B,) then F(a,B) : F(A}, B,)—F(A,, B,)in &. The
standard example of this situation is the functor X : {°oP x @9
(for any Category @) given by H{(4,B) = ({(A4,B). Fora: A,— A
and 8: B;—>B, in ({, the corresponding map
Hi(a,p) : @(AI,BI)-»@(AZ,BZ) sends o to ao f.

Suppose now that F: @—% and G : B—Q are (covariant)
functors. Then, by composition with the functors Hg and H@ above,
we obtain two functors P,Q : (®°P » B which are given on objects
by P(4,B) = B(F(A4), B) and Q(4,B) = (4,G(B)). Their effect on
morphisms a : A, — A, and B : B, — B, is described as follows:
P(a,f3) is the map from B(F(4,),B,) to B(F(A,),B,) sending p to
F(a)pB; Q(a,P) is the map from B(4,,G(B,)) to A(4,, G(B,)) sending
o to ao G(B). If the two functors P and Q are naturally equivalent,
we say that (F,G) is an adjoint pair of functors. This relation is
not symmetric: we say that F is left adjoint,to G and that G is right
adjoint to F. We also say that F is a left adjoint and has a right
adjoint, etc. As usual in Category theory, the definition is much
simpler than it seems at first sight. It says, first, that there is a
one-one correspondence between morphisms ¢ : A— G(B) in ® and
morphisms o* : F(A)— B in B and, second, that the correspondences

0<+—0* can be chosen simultaneously for all 4, B so that they are
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natural with respect to the morphisms of @ and B, which means that

whenever one of the diagrams

A% ,GB) FAp___ 7" | B
a G(B) F(a) B
7 r*
) G(B,) F(4y By

commutes, so does the other.
One deduces immediately that if a, : A—A4_, 0. : A, —>G(B.) and
1 1 1 1 1
Bi :B,—B (1 =1,2), then
a, o, G(,Bl) =a,0, G(,82)<=>F (ap) o¥ [)’1 = F(a,) 0’5[32. In par-

ticular, if one of the diagrams

A, 9 G(B,) F(A)) 1 B,
a G(B) F(a) B
2 —TG(Bz) F(AZ)—T—_"BQ

commutes, then so does the other.

Some familiar examples should make this concept clear.

1. Let@=3andB = @1, the Category of groups. Let
F . 5—>§1 assign to each set A the free group F(A4) on A. Let
G: Ql — 9 assign to each group B its underlying set G(B). Every
map from A to the set G(B) extends uniquely to a group homo-
morphism F(A4) — B, and this gives a one-one correspondence
A, G(B))—»Q1 (F(A),B), which is clearly natural (a composite

map A' — A — G(B) extends to the composite homomorphism
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F(A') - F(A) - B etc.). Thus the free group functor 5—>§1 is left
adjoint to the forgetful functor gl —9.

2. More typically, let @ = Ql, and let B = R, the Category of
rings-with-1. For any group 4, let F(A) be its group ring over the
integers. For any ring B, let G(B) be its group of units. Then we
have functors F : @1 —R and G : fRHQI with the obvious effect cn
morphisms. Now every group homomorphism from A to the units of B
induces a ring homomorphism from the group ring of A to B. The
converse is also true (we require, of course, that the morphisms in
R preserve the 1) and we have a natural one-one correspondence
tetween §(4,G(B)) and R (F(A),B). Thus (F,G) is an adjoint pair.

3. Let@ =% =7 *, the Category of topological spaces with
base-point. Let S(A) denote the reduced suspension of 4, and Q(B)
the loop space of B. Then (S,Q) is an adjoint pair of functors from
T* to T*.

4.  An example from Ch. 1. The forgetful functor V : §— 8
(V(G) is the set of vertices of the groupoid G) has as right adjoint
the functor A : >G. (A(l) is the simplicial groupoid with vertex set
I). V also has a left adjoint, namely the functor T : 5%@ which
assigns to each set [ the “‘trivial’’ groupoid T(I) with vertex set I and
no edges apart from the identity elements ei(i € I). Thus (V,A) and
(T,V) are adjoint pairs. There is also an adjoint pair (C, T), as we
shall see in the next chapter, but there is no adjoint pair (A, ?).

We shall prove in a moment that if a functor F has a right (or
left) adjoint, then that adjoint is uniquely determined by F up to
natural equivalence. Thus, for example, the description ‘‘left
adjoint of the forgetful functor from groups to sets’’ characterises
the construction of free groups (up to isomorphism). The language
of adjoints provides in this way a very convenient method of des-

cribing the universal properties of such constructions, and we shall
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make use of it throughout the following pages. We hasten to add
that convenience is not the only reason for introducing adjoints, for
they play a vital role in much of Category theory. Their most
important property (preservation of limits) will be discussed in Ch.7,
and will provide a unified treatment of several later topics.

The connection between adjoints and universal properties
arises as follows. Suppose that F : @ % and G : B—Q form an
adjoint pair (F,G), and choose fixed isomorphisms )
®4,G(B)) = B(F(A), B) which together form a natural equivalence.
Putting B = F(A) we have, for each 4, an isomorphism of sets
Q(A, G(F(A))) = B(F(A), F(A)). This enables us to pick out a
special (-morphism o, + A— G(F(A)) which corresponds to the
identity morphism e in B.

FA)
Of the two corresponding diagrams

%4 €
A——L1 ~G(FA4,)) F(A)—L1 »F(4))
a G(F(a)) F(a) F(a)
4, €
Az——>G(F(A2)) F(Az)———>F(A2)
the second commutes; therefore so does the first, i.e. the N form a

natural transformation ¢ : 13— G o F. Suppose now that an @-
morphism a : A— G(B) is given, and consider corresponding diagrams
%4

A—— » G(F(4))

F(A) —— + F(4)

G(B) 2

™

PP R—

i
G(B)
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The second commutes if and only if 8 = a*; therefore there is one
and only one morphism of the form G(8) which makes the first
commute, namely G(a*). In this sense 0, is universal for

(-morphisms a : 4 — G(B).

ProposITION 3. Let F: @8 and G : B—Q be functors. Then
the following are equivalent:
(i) (F,G) is an adjoint pair.

(ii) d @-morphisms o, : A— G(F(A)) such that
(a 0:13—>GoF is a natural transformation, and
(b) for every ({-morphism a : A — G(B) there is a unique
B-morphism 3 : F(A) — B such that aAG(,B) =a,

(iii) 4 B-morphisms gt F(G(B) ) — B such that
(a) r:Fo G->1;B 1s a natural transformation and
(b) for every B-morphism B : F(A) — B there is a unique
C‘f—morphism a: A— G(B) such that F(a) g = B.

Proof. (i) ==>(ii) has been proved above.

(i) ==>(i). The existence and uniqueness of 3 gives a
map a — 3 from (4, G(B)) to B(F(A),B). There is a map the other
way given by B0 ,G(f), and condition (b) ensures that these are
inverse maps. We write 3 = a*. The naturality of ¢ implies that for
A Al —A Aoy = OAI G(F())). Hence, fora: A— G(B) and p: B—B,,
we have AaG(p) = /\oA G(a*)G(w) = o4 1G(F(/\) )G(a*)G(p) =
OAIG(F()\)a*y). Thus (A aG(p) )* = F(A\)a*p, which is the condition
for a —a* to be natural.

(i) (iii) follows by duality. (Think of F and G as functors
F: @°P_BOP and G: B°P ~@®@°P. Then (F,G) is an adjoint pair if
and only if (E,F) is an adjoint pair). B

PROPOSITION 4. (i) Let (F,G), (F',G') be adjoint pairs of functors
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with F,F': @ =% and G,G': B—Q®. Then F = F' if and only if
G = G'. (Thus F determines G to within natural equival ence, and
vice versa).

(ii) If (F{,G,) and(F,,G,) are adjoint pairs with @i%ize
and GG—%%G—}@, then (on Fl , G1 oG2) is an adjoint pair.

Proof. (i) Suppose that G = G'. Then (F', G) is an adjoint pair
since the induced isomorphisms R(4, G(B)) = ((4,G'(B)) =
B(F'(A),B) form natural transformations. We may therefore assume
that G' = G. Denote by o, and g, the special (f-morphisms
A—G(F(A)) and A— G(F'(A)) as above. By the universal property
of o, there is, for each 4, a unique B-morphism BA: F(A)—-F'(A)
such that o, G(BA) =o¢',. In the diagram

A
Al
G'Al 0':4 1
a
G
G(F(A ) Ba ) ~G(F(A))
Y
A2
G(F(a)) G(F ()
UAZ ‘7:42
\ Y
G(F(A,)) ~G(F(A,))
2 G(BA 2) 2

the left and right parallelograms commute (since o, ¢' are natural)
and the two triangles commute (by definition of B, and BA ). The
2

map 0 =a o'

R A1 —>G(F‘(A2)) can therefore be written as either
2
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o, 1G('8A1) G(F'(a)) or g, 1G(F(a)) G(BA 2); in other words, the
equation 6 = o, 1G (B) has the two solutions 8= f8, 1F'(a) and

B= F(a),BAQ. It follows that BA 1F'(,a) = F(a),BAz, that is, the 'BA
form a natural transformation 8: F-»>F'. In fact B is the unique
transformation from F to F' satisfying o, G(BA) =0} for all A.
Similarly, there is a unique natural transformation y : F' ->F satisfy-
ing o, G(y,) = o0,. The composite transformation By : F —F is then
the unique natural transformation satisfying o, G( By)g) =0y,
namely the identity transformation on F, and yf3 is the identity
transformation on F'. Thus F = F', as claimed. The converse
follows by duality.

(ii) There are natural isomorphisms A, G(B) = %(F1 (4),B)
and B(B', G,(C)) = C(F, (B'), C). On restricting these to the
situation B = G,(C) and B' = F, (A) they can be composed to give
isomorphisms ((4, G,(G,(C))) = C(F,(F, (4)), C) which form a

natural equivalence. B

Exercises

1. Let X be a graph and 6 : X—%$ a diagram in the Category B.
Let X* denote the image of X under the canonical map 6*: X— A(l),
where | = V(X). Writing 6* also for the induced map X — X*, show
that the diagram is commutative in the sense defined above if and

only if 6 = §*¢ for some category-map ¢ : X* —B.

2. LetF:{®—%B and G: B> be functors. Show that if both
(F,G) and (G, F) are adjoint pairs then FoGoF ~ F and GoFo G = G.

3. Let EI: fD—»S, Ez: @——»5, E3: Q—»S denote the forgetful
functors associating to each graph, category or groupoid its set of

edges. Find left adjoints for each of E, E,E,.
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4. Show that if F: @ —® has a right adjoint then F preserves
epimorphisms (i.e. if @ is an epimorphism in ( then F(a) is an epi-
morphism in B). Dually, any right adjoint functor preserves mono-

morphisms.

CHAPTER 3
Paths and components

The existence of free algebras and presentations of algebras
by generators and relations depends on the notion of words or well-
formed formulae. These are formulae containing variables and
operators so constructed that they make sense, i.e. so that when the
variables are replaced by elements of an appropriate algebra the
word can be evaluated by calculation in the algebra. In the case of
semigroups it is usual to omit the symbol for multiplication and also
the brackets and define a semigroup-word to be just a string of
variables, and the introduction of inverses of variables leads to the
notion of group-words. We want to generalise these ideas to the
case of categories and groupoids, and since multiplication is not
always defined in these algebras we must somehow specify when
two variables can be multiplied. To do this we take for our
variables the set of edges of a fixed graph, and multiply two edges
if and only if they abut. The resulting category-words are essen-
tially the same as directed paths in the graph, and groupoid-words
are undirected paths. In this context ‘‘path’’ and ‘‘word’’ are almost
synonymous, and we shall see that the application of standard
arguments to paths instead of words leads to the construction of
free categories and free groupoids and to the solution of the word
problem for these algebras. Our first task is to make these notions

precise.

23
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Let [n] denote the graph

0 1 2 n-1 n

with n+1 vertices and n edges joining them in sequence (n>0). If X
is any (directed) graph and 1, j are vertices of X, we define a
directed path of length n from 1 to j in X to be a graph map p: [n]— X
with 0 1 and n+j. In particular, there is one directed path of
length 0 from 1 to 1 for each vertex i of X. Equivalently, one may
think of a directed path as a sequence p = (xq) Xpy oeey X)) of edges
of X which link up in sequence. (There is an ambiguity in this
notation when n=0 and one should write ( ); or ei for the ‘‘empty’’
path at the vertex 7). If p = (x Xy ey X)) and q = Oy» Yorees Vo)
are directed paths from 7 to j and from j to k, respectively, then

pq = (x,, Xgs ooy Xy ¥y 5 -oes ¥ ) is a directed path from 7 to k. Thus
we have a multiplication of paths: 13)1.]. X ﬁjk — P:k, where P:.j
denotes the set of all directed paths (of all lengths) from 1 to j.

This multiplication is associative, so we obtain a category ﬁ(X),
the category of directed paths in X. Its vertex set is V(X) and its
identities are the paths of zero length.

If 0 : X—Y is a graph-map, and p : [n] - X is a directed path
from 7 to j in X, then pO: [n] —Y is a directed path from i6 to j6 in
Y. Thus 6 induces a graph-map ﬁ(ﬁ) : Is)(X)—>I—5(Y), and it is easy
to check that it is actually a category-map. This shows that we
have constructed a functor P : P —C. We also obtain a canonical
embedding oy X—»IB)(X) by considering each edge of X as a path of
length 1. oy is a graph-map, and we shall often identify X with its
image in 13)(X). Finally, if A is a category, and F : C—9 is the
forgetful functor, consider the category ﬁ(F(A)) of directed paths in
F(A). Ifp= (al, IR a ) is a path in F(A) then the product
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a=aa,..a, is defined in A, and we call it the value of p in A.
(The value of the empty word at 1 is defined to be the identity e, of
A). We therefore obtain an evaluation map €y ﬁ(F(A))—»A defined
by p ¢, = (value of p in A), and it is clear from the definition of

multiplication for paths that €, is a category-map.

PROPOSITION 5. P : D—C is left adjoint to the forgetful functor

F:C-9.

Proof.  The canonical maps oy : X—>F(ﬁ(X)) form a natural
transformation o : 19— Fo P. ffa: X — F(A) is a graph-map from X
to a category A, then ﬁ(a): ﬁ(X)——»IS)(F(A)) can be composed with
the evaluation map ¢, to give a category-map f3 = ﬁ(a) €4 P?(X)—>A.

The diagram

g
X——— > F(B(X))

a F(B)

F(4)

commutes, since the restriction of 3 to (the image of) X in Ig(X) is
just a. Also, 8 is unique with this property (by Proposition 2)

since X generates ﬁ(X). The result follows now from Proposition 3.1

The universal property of I;(X) described above reduces to the
universal property of free semigroups when X has just one vertex.
We therefore define free categories as follows. Let X be a given
graph and ¢ : X— C a graph-map into a category C. We say that C
is the free category on X (relative to o) if for every graph-map

0 : X— A, where A is a category, there is a unique category-map
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0* : C— A such that § = 0 0*%. This property determines C and o up
to isomorphism, and the proof of Proposition 5 shows that there is a
free category on any graph X, namely ﬁ(X).

We now need the notion of (undirected) path in a graph X.
Intuitively this means a map of the undirected graph e—e——o ....
e— e into the undirected graph corresponding to X. This would be
an adequate definition in some contexts, but here we need to be
more careful since we want to use these paths in place of group-
~ words and it is essential that to every edge in X from i to 1 there
should correspond two paths of length 1 from 7 to 7 (one in each
direction, so to speak). We arrange for this as follows:

An involution of a graph X is a map E(X)—E(X) which sends
each x € Xi]. to some x € in in such a way that X=xforall x € E(X).
If X and Y are graphs provided with fixed involutions x+—x, y >y
then a morphism of graphs-with-involution is a graph-map a : X —»Y
such that xa = xa for all x € E(X). This defines the Category D of
graphs-with-involution. Similarly one can define the Category C of
categories-with-involution (an involution of a category 4 is a con-
travariant functor A— A of order 2). Now to each graph X one can
associate a graph-with-involution X as follows. Let X°P be a graph
anti-isomorphic to X and having no edges in common with X, and let
x denote the element of onip corresponding to x € X,;- Define X to
be the graph with the same vertices as X but with edges
)_(i]. = XI.]. U le’jp for all i,j. The map Xi— X, X - X is an involution of
X and we define x = x for x € E(X). This construction obviously
gives a functor | : D -9 and the reader should check that it is left
adjoint to the forgetful functor D-9.

We now define a path in X to be -a directed path in X and denote
by P(X) = I_’)()_() the category of paths in X. There are now two paths
x, x of length 1 for each edge of X, but still only one path of zero
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length at each vertex. If p = (y,, Yy -+es ¥, ) is a path fromitojin X
(r; €EX)), thenp =(y,, ..., ¥, ¥ ) is a path from j to i, and clearly
p—p is an involution of the category P(X). Thus P is a functor
from D to C.

PROPOSITION 5. P : D—C is left adjoint to the forgettul functor

C-9.

Proof.  In the proof of Proposition 5, if X and A are provided
with involutions, and all maps are required to preserve involutions,
the same argument shows that the induced functor P fﬁ—»é is left
adjoint to the forgetful functoré—n@. Now P =P o J, where

J: DD is left adjoint to the forgetful functor D—9. Hence P is

left adjoint to the composite forgetful functor C—9 by Proposition
4 (ii). m

DEFINITIONS. A graph X is connected if there is at least one
path from 7 to j in X for each pair of vertices i, j. A category or
groupoid is connected if its underlying graph is connected. A graph
X is the disjoint union of subgraphs x? (A e N if V(X) and E(X)
are, respectively, the disjoint union of their subsets V(X’\) and
E(X"); the X™ are then full subgraphs of X.

A maximal connected subgraph of X is called a connected com-
ponent of X, or simply a component of X. If one defines a relation
I ~ j on the vertices of X by the rule ‘‘i ~ j if there is a path from 1
to j’’ then, because P(X) is a category with involution, ~ is an
equivalence relation, and it is clear that the components of X are
just the full subgraphs on the equivalence classes of vertices. We

leave the reader to verify to following simple facts:

PROPOSITION 6. (i) Every graph is uniquely expressible as the

disjoint union of connected subgraphs, namely, its components.
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(i) The components of a category (category-with-involution,
groupoid) are themselves categories (categories-with-involution,
groupoids).

(i11) Any graph-map X —Y sends each component of X into some
component of Y. The image of a connected graph is connected.

(iv) A groupoid (or even a category-with-involution) A is con-
nected if and only if Aij 1s non-empty for all 1, € V(A).

(v) The components of a unicursal groupoid are simplicial

groupoids. @

The functors P and P give easy characterisations of the sub-
category or subgroupoid generated by a subgraph of a category or
groupoid (cf. p.9, Exercise 2). We note that every groupoid is a
category-with-involution in a natural way, the involution being de-
fined by x = x'1. It follows (Proposition 5') that every graph-map
0 : X— A, where 4 is a groupoid, induces a unique map 6*: P(X)—A
satisfying (i) 6* is a morphism of categories-with-involution, and
(i) 6 = 0 0*, where o is the canonical embedding of X in P(X). If we
identify X with its image in P(X) these conditions can be replaced
by (i) 6% is a category-map, (ii) x0* = x6, x@* = (x0)"! for x an edge
of X. The path ({,, 62, e fn) where ¢ stands for X, or ;i’ maps to
the element aja,...a_of A, where a, = x.0 if fi =x, and a, = (xit?)‘1
if & =x.

PROPOSITION 7. Let X be a subgraph of the category (groupoid)
A. Let B be the subcategory (subgroupoid) generated by X. Let
6% : ﬁ(X) — A (resp. 6* : P(X) — A) be the map induced by the
inclusion X C A. Then Im (6%) = B.

Proof.  The inclusion X C B induces a map P)(X)—>B (or P(X) > B)
which agrees with 0%, so Im(6*) C B. Since Im(6*) D X it is enough
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therefore to show that Im(6%) is a subcategory (or subgroupoid). In
the case of categories this follows from Proposition 1, since the
vertices of Is)(X) are the same as the vertices of X. In the case of
groupoids, Im(6*) is a subcategory-with-involution, and since the
involution in A is inversion, this means that Im(6*) is a sub-

groupoid. B

Note. This proposition tells us that the subcategory (subgroupoid)
generated by X has the same vertex set as X and that its edges are
all products of edges of X (and inverses of edges of X in the case
of groupoids). But we must include empty products, one at each
vertex of X. v

We say that the subgraph X of a graph Y spans Y if, whenever
there is a path from vertex 1 to vertex j in Y, there is already a path
from 1 to j in X ( in other words, V(X) = V(Y) and each component of

X has the same vertex set as some component of Y).

COROLLARY 1. |[f the category (or groupoid) B is generated by
the subgraph X then X spans B and each component of B is

generated by a component of X.

Proof.  Since 0% : ﬁ(X)—»B (or 6% : P(X) — B) is surjective and
fixes all vertices, the components of B are precisely the images of
the components of Is)(X) (or P(X)). But if X)\()\ €\) are the com-
ponents of X then the components of 13)(X) and P(X) are Ig(XA) and
P(X)‘), respectively. These are spanned by X)‘, and the result

follows immediately. B

COROLLARY 2. Let 0’\: A)‘—>A (A €A) be category-maps, and
suppose that the AN are groupoids. Then the subcategory B of A
generated by UA)‘OA is a subgroupoid.
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Proof. The graphs A)\G’\, while not necessarily groupoids, are
at least closed under inversion; hence X = UA’\GA is-closed under
inversion. By the proposition, every element of B is a product

1

b=x_x X, (n>0), where XrEX, so b'1=x;11...x‘21x' is also a

1727 1
product of edges of X and is therefore in B. m

Exercises

1. Let X be a graph, and 6 : X—%$ a diagram in the category B.
Let 0% : B(X)—®B be the induced category-map. The natural
definition of commutative diagram is as follows: 0 is commutative
if, for any pairs of vertices i, j of X, the elements of 131.1. (X) all have
the same image under 6*. Show that this is equivalent to the

definition in Ch. 2.

2. Let C: §-3 assign to each groupoid A the set C(4) whose
members are the components of 4. (This gives a functor by
Proposition 6 (iii)). Find a right adjoint for C, and show that C has

no left adjoint.

3. If Cis a free category, show that every full subcategory of C

(in particular, every vertex semigroup) is free.

CHAPTER 4
Free groupoids

We have already constructed the free category ﬁ(X) on a graph
X, and we shall now show how to construct the free groupoid n(X)
on X. We look for a groupoid #»(X) and a graph-map 7 : X —»7(X) such
that for every graph-map 6 : X — A, where A is a groupoid, there is a
unique groupoid-map 6* : #(X) - A with 6* = 6. This is our
definition of free groupoid, and it determines #(X) up to isomorphism
of groupoids. Equivalently (by Proposition 3) we look for a functor
7 : PG which is left adjoint to the forgetful functor §—9. The
functor =, if it exists, is then determined up to natural equivalence.

Suppose that, for a given graph X, such a groupoid #(X) and a
graph-map 7 : X — n(X) exist. Then 7 induces a map 7* : P(X)— n(X).
We identify X = X U X °P with its image in P(X), so that 7* can be
described as the unique category-map P(X)->m(X) such that xr* = x7
and xr* = (xr)! for x an edge of X. Note that with this convention
the path p = (yl,yz,...,yn), whete y = x  or ;V, is actually the
product p = YiYy ¥, of the paths Y YooYy of length 1. If the
path p =y, ¥,--- Y, has image t = by ) ... (yn 7*) under 7*, then the
‘““opposite’’ path p = )7n }71 has image (yn %)-1 ... (y1 )1 = 1,
Thus the path pp (which is not an identity-in P(X), but a path of
length 2n) maps to tt’l, an identity of #(X). We shall show that in
fact 7(X) is the ‘‘biggest’’ homomorphic image of P(X) in which

opposite paths cancel in this way.

1l
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Let p = (yl,yz,... V) be a path in X, i.e. a directed path in
Y =X U X°P. If, for some v, Yy+1 =%, (0ry,,, =y, which is the
same thing), then (yl,yz,... Y12 Yysgrees yn) is also a path in X,
which we call a simple reduction of p. We write p~p ' if there is a
finite sequence of paths p = Py Pys woes Pp =P "(k>0) such that for
r=1,2, ..., k, p, is a simple reduction of p,_; or vice versa. This
is an equivalence relation on the paths, and we write {p) for the
equivalence class containing p. Since equivalent paths have the
same source and the same target we can assign these as source and
target of the equivalence class, and the set of equivalence classes
then acquires a graph structure with vertex set V(X). If p,q are
paths such that the product pq is defined in P(X) and if p~p’, g~ ¢,
then p'q’ is defined and p'q'~pg. Hence the equivalence classes of
paths form a category if we define P @©-= {pq> whenever pq is
defined in P(X); the identity elements are the classes <ei>, where
e; is the empty path at the vertex i. This category is in fact a
groupoid since, for any path p, p;_) and ;_)p are equivalent to empty
paths, se {p)> <;> and <;> {p) are identity elements. We denote
this groupoid by #(X) and call it the fundamental groupoid of the
graph X. The reason for this name is that the definition of equiva-
lence of paths is essentially a combinatorial definition of homotopy
with fixed end-points (see p.169, Exercise 5). We shall also call it
the free groupoid on X, a name which we now justify.

There is a canonical graph-map 7 : X —a(X) given by xr = .
Suppose that A is a groupoid and 6 : X — 4 is a graph-map. By the
universal property of P, 6 extends uniquely to a map of categories-
with-involution 61 : P(X)—>A; and 6 = ;191, where p is the inclusion
map X — P(X).
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X » 77 (X)

Also 7 = pup, where p is the map p — <p> from P(X) to #(X), and p is
also a map of categories-with-involution. Now for any path p in X
p91 and ;91 are inverses in A, and it follows that any two equivalent
paths have the same image under 01. Hence 61 = pf*, where

0* : n(X)— A is clearly a category-map. Since #(X) and A are
groupoids, 0* is actually a groupoid-map, and r0* = pp0* = po, = 0.
It remains to show that 6% is the only groupoid-map with 76* = 6.

But if also 70 ' = 6 then u(pf") = puf,, so pf'= 0, by the universal
property of P, and clearly this implies ' = 0*.

This shows that #(X) is the free groupoid on X and it follows
easily that 7 is a functor from D to § (if 6 : X - Y, then () is the
groupoid map #(X) — 7(Y) induced by the composite map
X —-Y —n(Y)). By Proposition 3 we therefore have:

PROPOSITION 8. 7 : DG is left adjoint to the forgetful functor

G-9.m

As usual, the solution of this algebraic universal problem leads
immediately to a word problem: can we give an algorithm for deciding
whether two paths in X have the same image in #(X)? The answer

here is virtually the same as for free groups. Letp = (yl,yz,...,yn)
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be a path in X, where y; =x or ;1 (x; an edge of X). We say that p
is a reduced path (or reduced word) in X if, fori =1,2,...,n-1,

Vi # ;i, i.e. if p has no simple reductions. Clearly, every path is
equivalent to at least one reduced path, and one can show, by any
of the standard methods used for free groups, that no two reduced
paths are equivalent. (Thus to decide whether p and q are equiva-
lent paths or not, one need only obtain, by a finite number of simple
reductions, reduced paths p' ~p and q' ~ g, and examine p’, ¢ to see
whether they are the same path or not). An alternative approach,
often adopted in texts on group theory, is to take the set of reduced
paths in X and give it the structure of a groupoid as follows. The
vertices are the same as those of X; if p and q are reduced paths
from 7 to j and from j to &, respectively, their product is defined to
be the reduced word obtained from pq by successive simple reduc-
tions, (there being at most one simple reduction possible at each
stage). The problem here is to show that the resulting multiplication
is associative; once this is established it is easy to see that one
has constructed a free groupoid on X.

We shall not give details of these arguments because, on the
one hand, they differ very little from the corresponding arguments
for groups and, on the other hand, we shall later solve a more
general word problem (see p.73, Theorem 4). We state the result
here for future reference, and warn the reader to watch for circular

arguments; if he finds any, he had better do Exercise 1 below.

PROPOSITION 9. Each equivalence class of paths in a graph X

contains exactly one reduced path.

Since the equivalence classes of paths in X form the free groupoid

7(X), we may restate this result for arbitrary free groupoids :
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PROPOSITION 9. Let X be a graph, A a groupoidandr: X —A a
graph-map. Then A is a free groupoid on X, with canonical map r,
if an only if

(i) 7 induces a bijection V(X) — V(A) and

(11) each edge of A is either an identity element or is uniquely

expressible as a product (XIT)EI (XZT)62 (an)en (n > 1), where X,
1s an edge of X, €, =+*1 and if, for some 1 = 1,2,....,n-1, X, =X,
then €= €4 '
In particular, if A is free on X then the canonical graph map X — A
is an injection. B

In view of the last assertion we can identify X with a subgraph
of the free groupoid A, and we then say that 4 is freely generated
by the subgraph X. The condition for this is that the non-identity

elements of A should be uniquely expressible in the form

1 _*1
X1 X2 .

1 1

le (x; edges of X) with no adjacent pairs xx ™~ or x " x.

Exercises

1. Let R(X) denote the subgraph of P(X) whose edges are all
reduced paths in X (including all paths of length 0). Define a
multiplication in R(X) as described above and use the method of van
der Waerden to show that R(X) becomes a groupoid (cf. Kurosh,
Theory of groups Vol II p.13). The trick here is to let M, be the set
of all reduced paths ending at the vertex i and to represent R(X) as
a groupoid of mappings between the sets M,, the mappings being
given by multiplication on the right in R(X). Show that the repre-
sentation is faithful and deduce that R(X) is the free groupoid on X.



CHAPTER 5
Trees and simplicial groupoids

Having established the great similarity between free groupoids
and free groups, we now point out one of the most striking differ-
ences: free groupoids can be finite! For example, if we take for X
the graph [1] with two vertices and one edge x joining them, then
apart from the two paths of length zero, every path consists of a
sequence of alternating x’s and x’s. Thus every path is equivalent
to x or x or one of the two empty paths, and 7 (X) has just two
vertices and four edges. It is in fact the simplicial groupoid with
two vertices, which we denote by Al Similarly #([n]) is isomorphic
with A", the simplicial groupoid with n+1 vertices. A" can thus be
thought of as a free groupoid of rank n, i.e. generated freely by n
edges (but note that free groupoids of the same rank are not neces-
sarily isomorphic). More generally, we shall show that the free
groupoid on any tree is simplicial and conversely that every sim-
plicial groupoid is freely generated by any one of its maximal
sub-trees. For completeness we include the necessary graph theory.

Letp = (yl,yz,...,yn) be a path in the graph X (i.e. a directed
path in X = X U X°P), with y, i1, ,—1, forv=12,.,n Here

either y  is an edge of X ory, = ;V, where x ;1 — is an edge

1
v v-1
of X. We call p a closed path if in = io. A circuit in X is a closed
path p as above satisfying (i) n>1, (ii) il,iz,...,in are distinct

vertices of X, and (iii) if n=2 then Y, ;é;l. In particular, any circuit

37
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is a reduced path in the sense of Ch. 4. If X has no circuits it is
called circuit-free; a connected, circuit-free graph is called a tree.
(Note that this should properly be called a directed tree, but our
convention is that all graphs are directed). It is clear from the
definition that any subgraph of a circuit-free graph is circuit-free;
hence a graph is circuit-free if and only if its components are trees.
The same ideas can be approached from a different direction.
If a graph X is such that any two paths between the same endpoints
are equivalent in X (in the sense of Ch. 4), then we say that X is
simply-connected (which does not imply connected). This definition
is harder to work with than the definition of ‘‘circuit-free’’ since the
equivalence of two paths in X depends on the whole of X, and it is
not immediately clear, for example, that any subgraph of a simply-
connected graph is simply-connected. However, the two concepts
coincide, as we now show; this fact is essentially a special case of

the solution of the word problem for free groupoids.

PROPOSITION 10. A graph X is simply-connected if and only if it

is circuit-free.

Proof.  Suppose that X is circuit-free. If X contains a pair of
inequivalent paths p, g joining the same endpoints, we may choose
such a pair of minimal total length. The closed path pq is then
easily seen to be a circuit, which is impossible. Thus X is simply-
connected. Conversely, if X is simply-connected, then any closed
path in X is equivalent to a path of length 0 which is, of course,
reduced. By Proposition 9 (the solution of the word problem), no
two distinct reduced paths are equivalent, so every reduced closed
path in X must have length 0. In particular, X contains no

circuits.
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COROLLARY 1. #(X) is unicursal if and only if X is circuit-free;

w(X) is simplicial if and only if X is a tree.

Proof. The edges of #(X) are the equivalence classes of paths
in X, so #(X) is unicursal if and only if X is simply-connected, and
the first assertion follows. Obviously, #(X) is connected if and

only if X is connected. B

COROLLARY 2. Let A be a groupoid and let X be a circuit-free
subgraph of A. Then the subgroupoid of A generated by X is freely

generated by it and is unicursal.

Proof. Let B be the subgroupoid generated by X. The inclusion
map X — B induces. a groupoid-map ¢ : #(X)— B which is surjective
(see Proposition 7). Also, ¢ fixes all vertices of #(X), and since

7(X) is unicursal, it is clear that ¢ must be injective. Hence ¢ is

an isomorphism of groupoids. M

The following lemma is intuitively obvious, but requires some

justification.

LEMMA. Let X be a graph, x an edge of X, and X* the result of
removing x from X (but not removing any vertices). Then X is a tree
if and only if (i) X* is the disjoint union of two trees and (ii) the

two ends of x lie one in each component of X*.

Proof. Suppose first that X is a tree. Then X* is circuit-free and
its components are trees. Let x €Xi].. Then i and j lie in different
components of X*, for if p is a path in X* from 1 to j of minimal
length, it is easy to see that p;is a circuit in X. On the other hand,
if k is an arbitrary vertex of X, there is a path in X from k to i and
one from k to j. From amongst all such paths choose g of minimal

length. If ¢ = q1Xqy or q = qI;q2 then g, is a shorter path from k to
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ior j. Hence g does not contain x or x, so is a path in X*. It
follows that X* has exactly two components.

Conversely, suppose that (i) and (ii) hold. Then certainly X is
connected, and we have to show that it is circuit-free. Any circuit
p in X must contain x or x, so we may assume that the first term of
p is x or x. By definition of ‘‘circuit’’, p contains only one term x
or ;, and if we delete this we obtain a path in X* connecting i and

j, which is impossible. B

THEOREM 1. (i) Every circuit-free subgraph of a graph X is con-
tained in a maximal circuit-free subgraph of X.
(i1) A circuit-free subgraph of X is maximal (among all circuit-

free subgraphs) if and only if it spans X.

Proof. (i) Let (M (A €A) be a chain, with respect to inclusion,
of circuit-free subgraphs of X. If p is a circuit in ¥ = U y? then,
since p involves only a finite number of edges, it lies in some YA,
a contradiction. Thus Y is circuit-free and the result follows from
Zorn’s lemma.

(ii) Suppose that ¥ C X is circuit-free and spans X. Since ¥
contains all vertices of X, any strictly larger subgraph contains an
edge x not in Y. Since ¥ spans X the ends of x lie in the same com-
ponent Y0 of Y. By the lemma, Y0 with x adjoined contains a
circuit, so Y is a maximal circuit-free subgraph.

On the other hand, suppose that ¥ C X is circuit-free and does
not span X. Then there is an edge x of X whose ends lie in differ-
ent components Y, , ¥, of ¥ (otherwise any path in X would lie in a
component of ¥). By the lemma Y UY, with x adjoined is a tree,

so ¥ with x adjoined is circuit-free and ¥ is not maximal. M

COROLLARY 1. Every connected graph is spanned by a tree. m
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COROLLARY 2. Let A be a unicursal groupoid. Then A is free,
and the subgraph X of A generates it freely if and only if X is a
maximal circuit-free subgraph of A. If A is simplicial then it is

generated freely by X if and only if X is a tree spanning A.

Proof. If A is unicursal and is freely generated by X then X spans
A and is circuit-free (Propositions 7 (Cor. 1) and 10 (Cor. 1)). Hence
X is a maximal circuit-free subgraph of A. Conversely, if 4 is
unicursal and X is any maximal circuit-free subgraph, then X spans
A and generates freely a unicursal subgroupoid B of A (Proposition
10 (Cor. 2)). Since B spans A and A is unicursal, we must have

B = A. The last assertion follows immediately. B

Of course we do not need Zorn’s lemma to show that the sim-
plicial groupoid A(l) is free: if i is a fixed vertex, the edges (i, j),
j # 1, form a spanning tree and generate A(l) freely. However we
certainly need the axiom of choice or its equivalent to prove that
all unicursal groupoids are free, and the graph-theoretical form of
Zorn’s lemma given above is the one we need for later applications.
We shall also need a standard numerical result for circuit-free

graphs.

PROPOSITION 11. Let X be a finite graph with e edges, v vertices
and c components (c = 0 if X is empty). Then X is circuit-free if

andonly if e - v+ c = 0.

Proof.  Suppose that X is circuit-free. We use induction on e to
show that e -v +c = 0. If e=0 then the vertices are all in distinct
components, so ¢ = v as required. If e>0, let x be any edge. Let
X, be the component of X containing x and let X*, X3 be the result
of deleting x from X, X, respectively. Then X, is a tree, so by the

lemma, Xg has two components. All other components of X are
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components of X*. Thus X* has c* = c+1 components, v¥ = v

vertices and e* = e-1 edges. By induction hypothesis e* - v*+c*=0

since X* is circuit-free. Hence e-v+c=o.

Conversely, suppose that e~ v+c=0. Let X 'be a maximal
circuit-free subgraph of X, with parameters €', v', ¢c’. By Theorem 1
X'spans X, sov' =vandc' =c. Bute'-v'+c' =0, so e = e and

X'=X. Thus X is circuit-free. m

COROLLARY. A circuit-free finite graph is a tree if and only if
e=v -1 A connected finite graph is a tree if and only if

e=v-1.m

Exercises
1. Show that e—v+c>o0 for any finite graph.

2. Call the edge x of the graph X critical if, when x is deleted,
the resulting graph X* does not span X. Prove that X is circuit-free

if and only if every edge of X is critical.

3. Show that if X is circuit-free then ﬁ(X) is a unicursal category
with no invertible elements except the identities (i.e. I_’)(X) is an
order relation on I = V(X)). The converse is false: see the next

exercise.

4. Let (I,<) be a pre-ordered set, and let C be the corresponding
category (with vertex set | and edges all (i, j) with i < j). Show that
C is a free category if and only if (I, <) satisfies the following con-
dition: for all i, j €l the interval [}, j] = {k | 1< k< j}is finite and

linearly ordered.

CHAPTER 6
Fundamental groupoids of topological spaces

Let T be a topological space and I a subspace of T. We shall
describe a groupoid #(T,I) with vertex set I and edges the homotopy
classes (with fixed end-points) of paths in T. A path in T of length
r from 1 to j is a continuous map p from the real closed interval [O,t]
to T sending 0 to i and r to j. If g is a path of length s from j to k
then the map

t—(tp O<tgn)
t—(t-r)q (rgtr+s)

~

is a path of length r+s from 1 to k, which we denote by p-q. This
partial multiplication of paths is associative and has identities (the
paths of zero length). We therefore obtain a category P(T) with
vertex set T. The full subcategory with vertex set I C T is denoted
by P(T,I); its edges are paths in T with ends in I. This category
has a natural involution: if p is as above then p defined by
(t);)_= (r-t)p is a path of length r from j to 1, and clearly ;E: ap,
p =p. The constant paths (mapping [0, r] to a point) are fixed under
this involution.

If p,p’ are paths of length r from 1 to j, write p_p’ if p and p’
are homotopic (rel. end-points), that is, if there is a continuous map

h from the rectangle [0,r] x [0,1] to T such that

43
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(t0h =(p, (LDh=(p" (0<t<T)
OME=1, (tMh=j (0<AL])

For arbitrary paths p,p’ from i to j, write p—p' and say that p,p’ are
equivalent paths, if there exist constant paths c,c’at j such that
p-c = p-c’ in the above sense. It is boring (but not difficult) to
verify the following facts:
(i) the definition of ~ is unambiguous for paths of equal length;
(ii) = is an equivalence relation on the set of paths from i to j;
(iii) if p~p’ (i—j) and g=~gq' (j—k) then p-q—p"q' (i —k).
For details, see Brown [6]. It follows that the equivalence classes
{p) of paths in P(T,I) form a category =(T,I) with vertex set I and
multiplication {p) - {a) = {p-a)y. The identity element at i is the
class containing the path of zero length at i; it contains also all
constant paths at i. Finally, if p is a path of length r from i to j

then the function

(tp (0<t<r, 0<AL]Y)

1
(t,Mh =
(@r-HMp (r<t<2r, 0<AL]

is a homotopy c ~ p-p, where c is the constant path of length 2r at i.
Thus <p><;> = <c> is the identity class at i, and since p = p,
a(T,I) is a'groupoid with <p>'1 = <;> The groupoid #(T) = #(T, T)
is the fundamental groupoid of T. At the other extreme, if [ is a
point i, we get the fundamental group n(T,i) of T at the point i; these
fundamental groups are just the vertex groups of #(T).

In a path-connected space the fundamental groups at different
points are isomorphic (but not canonically isomorphic). The proof

is a groupoid argument and the result can be stated as

PROPOSITION-12.  All vertex groups of a connected groupoid G

are isomorphic.
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Proof. Let i,j be arbitrary vertices of G. Then H g EGi]., and the

map x1—g lxg is a group isomorphism G, —>ij. ]

The constructions P and 7 have obvious functorial properties.
If a : X—Yis a continuous map then composition with a sends paths
in X to paths in ¥, and equivalent paths in X go to equivalent paths
inY. If ICX, JCY and [a C J we therefore obtain a category-map
P(a) : P(X,I) > P(Y,]) and a groupoid-map n(a) : n(X,[) —n(¥,]). If
J' denotes the Category whose objects are pairs (X,I) of spaces
with I C X and whose morphisms a : (X,I)—>(Y,]) are continuous
maps a : X —Y with la C J, then we have defined functors P : NRNG
and 7 : J'—(§. By restriction we also have functors P :  —C,
7:3—>Gand P : ffl —>Gl, m: ‘Tl —+§1, where J is the Category of
topological spaces and Tl is the Category of topological spaces

with base-point.

PROPOSITION 13. Ifaq, B: X— Y are homotopic, and [ a C ],
IB C ], then the groupoid-maps n(a), n(B) : n(X,I) —»n(Y,]) are

naturally equivalent.

Proof. Let H be a homotopy from a to (3, that is, a continuous map
H: X x[0,1]—Y such that (x, 0)H = xa, (x, 1)H = x3. Then, for
each x € X, the map p,_ : t+>(x, t)H is a path of length 1 in ¥ from
xq to xB3. In particular, for i €1, p, is a path from iq to i3, so is an
edge of P(Y, J). Now let g be any path in X, of length r, from 1 to j,
where 1, j €. Then the paths (qa)-pj and p,-(gf3) from ia to jf3 are
equivalent by means of the function h defined, for 0 € t<r+ 1,

0 < A< 1, as follows:

(i, OH if -0
&MDh = { ((t-Mg, MVH  if 0gt-Agr
@G, t-nDH if t-A>r
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Hence, for any edge <q> : 1—j in n(X,I) we have, in #(¥,]), the
relation ({q) n(a))-<pj> = {p,> (2> #(B)), and this says that the
family {<p1>} is a natural transformation from n(a) to 7(f3).

i€l

Since the (p;> are invertible, it is a natural equivalence. W

This proposition suggests some useful analogies :

(i) We shall sometimes speak of a natural equivalence between
groupoid-maps 6,¢» : A— B as a homotopy. Such a homotopy con-
sists of a family {bi;» of edges of B (one for each vertex of A) such
that, for x € Aij, (x G)b]. = b,(x ¢), that is, x¢) = bi'l(x G)b}.. We
write 6 ~ ¢.

(ii) A groupoid-map a : A— A which is homotopic to the identity
map on 4 is of the form x — ai’lxa]. (x eAij), where a, is an
arbitrarily chosen edge with source i, for each i. Any such choice
gives a groupoid-map A — 4 since if x € Ai]., y € Ajk then
(ai-l

of A4 and picture it as moving the vertex i along the edge a; and

Xaj) (aj'ly ap) = al-'l(xy)ak. We call such a map a deformation

transforming edges accordingly. The same deformation can result
from different choices of the a.. For example, if 4 is a group then a
deformation of A is just an inner automorphism, and the same inner
automorphism may be induced by different elements of the group.
(iii) A special type of deformation will play an important role
later on. Let a : A— A be a deformation. Then Aa is a subgroupoid

j
as above) then it is the image under a of the element xa, ak'ly of

. : -1 -1 . :
of 4; for if a product a;"xa a’'ya, is defined (x €Ai]., y eAkl, a;

A;;. In fact Aa is a full subgroupoid since if z has the same source

and target as xa = ai'1

x a then z = (a; z a].'l)a. Write B = Aa and
let p be the corresponding map from A to B. If p restricted to B is
IB (or equivalently a? = a) we say that p is a deformation retraction.

Thus a groupoid-map p : A— B, where B is a subgroupoid of A with
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inclusion map p : B— A, is a deformation retraction if and only if
pp =1g and pp =~ 1,. The name is clumsy and we shall usually
abbreviate it to retraction since we do not need this word for any
other purpose. We also call B a retract of A if there is a retraction
from A to B; this implies, of course, that A and B are equivalent

groupoids.

THEOREM 2. Let A be a groupoid and B any full subgroupoid of A

which meets each component of A. Then B is a retract of A.

Proof. It is enough to take A connected and B any non-empty full
subgroupoid. Let A have vertex set [, and B have vertex set | C [,
J #©. The identity map on J can be extended to amapo:[—],
and since A is connected we can choose a, € Ai,ic’ for each 1 €1,
with a, = e, if 1 € J. The resulting deformation

a:x »—>a1.'1

1B.I

X a (x € Ai].) maps A to B and its restriction to B is

COROLLARY 1. Every vertex group of a connected groupoid A is
a retract of A. Hence every connected groupoid is equivalent to a

group.

COROLLARY 2. Two groupoids G and H are equivalent if and only
if there is a one-one correspondence between their components such

that corresponding components GA, HA have isomorphic vertex groups.

Proof. If such a correspondence exists then G and H can be re-
tracted to groupoids G', H' consisting of one vertex group from each
component of G, H respectively. Since G', H' are isomorphic, G and
H are equivalent. Conversely, if G, H are equivalent by maps

a: G—H and B: H—G, then af3 and Ba are deformations and there-

fore map each component of G or H into itself. It follows that a and
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)‘e H)\ between the components of G

and H such that GAa C H’\, HAB C GA, and G’\ = H)\. Each of G’\, HA

is equivalent to one of its vertex groups, so it remains to show that

B set up a correspondence G

equivalent groups are isomorphic. But this is clear since a deforma-

tion of a group is an (inner) automorphism. M

Exercises

1. Define deformation retractions for categories exactly as for
groupoids. A skeleton of a category 4 is a full subcategory con-
taining exactly one vertex of each component of the groupoid of
isomorphisms of A. Show that every skeleton of 4 is a retract of 4,
and that two categories are equivalent if and only if they possess

isomorphic skeletons.

2. Let A be a groupoid and p : 4A— A a groupoid-map with p2 =p.
Show that p induces a (deformation) retraction A — Ap if and only if

it maps each Aij bijectively to some Akl.

3. A retraction p of a groupoid A4 onto a subgroupoid B is a strong
retraction if it can be defined by a family {ri } with r, = e, for 7 in

B. Show that all retractions of groupoids are strong retractions.

-objects of K and a family {a x}

CHAPTER 7
Limits in Categories

Throughout these notes we try to adopt the following policy.
Whenever a new concept appears which is characterised by a univer-
sal property, we use this property as its definition. For example,
free categories and free groupoids were defined in this way, not by
the constructions of Is)(X) and 7(X), which are treated as existence
proofs. Many other examples of such definitions will occur, and
most of them are special cases of the definition of limits in arbitrary
Categories. We pause here to discuss this general concept. The
resulting delay in reaching the interesting parts of the theory will
be compensated for in two ways. Firstly, we shall avoid some
tedious repitition of standard arguments in different contexts, and
secondly, the use of general theorems-on limits will show clearly
which parts of the theory are trivial consequences of universal
properties and which depend on deeper results such as the solution
of word problems.

Let K be any Category and D a non-empty directed graph. A
D-diagram in X is a graph-map A : D — K. If D has vertex set I and
edge set E, then the diagram A consists of a family {Ai}iél of
of K-morphisms, where

x €EE

a, : Ai —>Aj if x is an edge from 1 to j. If A'is another D-diagram

in K with objects A' and morphisms a_, then a diagram-map or

D-map f: A— A’ is a family f = {fi of X-morphisms £, Ai->AIf

}i €l

49
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such that, for every edge x of D from i to j, fia;(=axfj. In the special
case when D is a category and A,A’ are functors, this is the
definition of natural transformation. It is clear that all D-diagrams
in X are the objects of a Category KP whose morphisms are all
D-maps (cf. the Category of functors and natural transformations
described in Ch. 2). A trivial (or constant) D-diagram in K is one in
which all vertices are mapped to the same object A and all edges
are mapped to the identity morphism on A. There is just one such
diagram for each object A of X, and we denote it by I'(A). Also, for
each K-morphism a : A — B there is a D-map I'(a) : I'(4) - T(B)
whose éomponents are all a. Thus we have a canonical functor

I: K-KP.

- Suppose now that we are given a D-diagram A in X, an object L
of K, and a D-map f : A—T(L). We say that f is a right limit of the
diagram A if it has the following universal property: for every object
K of X and every diagram-map g : A —T'(K) there is a unique
K-morphism B : L —K such that g = () (i.e. g; = £.8 for all i€l).
As usual, if L and f exist for a given diagram they are uniquely
determined up to K-isomorphism of L, and we write L, = lim A. By
abuse of language we also call L the right limit of A. Dually, if
f: (L) —A is a diagram-map such that every diagram-map
& : I'(K)—A is uniquely of the form g = I'(B)f, we say that fis a
left limit of A and write L = lim A. (Freyd [13] uses the terms right
root and left root. Mitchell [22] calls them colimit and limit, re-
spectively).

If the Category K is such that, for given D, every D-diagram in
K has a right limit, we say that K admits right limits over D. In
this case we have a functor lim : KP —K since if h: A—B is a
diagram-map then the composite diagram-map A — B —I'(lim B)

induces a unique K-map lim A : lim A—lim B. Similarly, if K admits
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left limits over D, then lim is a functor from KP L X. The universal
properties of limits can then be reinterpreted in terms of adjoint

functors as in Proposition 3 to give:

PROPOSITION 14. [If X admits right limits over D then the functor
lim - KP KX is left adjoint to the canonical functor ' : K—KP. if
K admits left limits over D then lim : KP X is right adjoint to I. &

Example 1. Let D have vertex set [ and no edges. Then a
D-diagram in K is just a family A = {Ai}i ¢ of objects of K. 1f
lim A exists it is called the product in K of the objects A, and is
denoted by m=T A;. The canonical maps 7, : rr——»Ai are

i €1
called projections, and the universal property says there is a one-
one correspondence between families of maps 0, : B—A, (i€l) and
maps 0 : B STT, given by 0, = . For a finite set [ we write
1T - A1 ><A2 Xoaun ><An. Similarly, lim A, if it exists, is called the
coproduct in K of the objects A, and is denoted by _lE_L A, (some

i€]
authors write X A)). For finite coproducts we write
i€l

AllA ... 1LA,.

Example 2. Let D be the graph e————e—<——e . Then the left

a a
limit L of a D-diagram A —1A0<2 A, (if it exists) is called the pull-
back of a, and a, (or the fibred product of A and A, over A,. The

diagram

h
[

>
/
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is then called a pull-back square in K. It is commutative and has
the universal property : for any K-maps g K—A, (1=1,2) such
that giay=8,0, there is a unique K-map y : K—L such that
g,=vI, £,= yfz. Of course the right limit of the diagram

A~ A~ A, always exists and is equal to Ay

a a
Example 3. The right limit of a diagram A1<——1A0—>2A2 is called
the push-out of a, and a, (or the fibred coproduct), and we speak of

push-out squares in the same way.

Example 4. Let D be the graphaC 2. Then the left limit of a

a
D-diagram A :;1 B is the difference kernel of a, and a,, and the
a
2

right limit is their difference cokernel, (also called the equaliser
and coequaliser of a, and a,).

If F: K- & is a functor and D is a graph, then from any
D-diagram A in K we can obtain a D-diagram F(A) in £ by composing
the maps D —-K— £. In fact F induces a functor KP— P in this
way. We say that F preserves right limits over D if, whenever the
D-diagram A in K has a right limit, the diagram F(A) has a right
limit in £ and lim F(A) = F(lim A). (Strictly, if the K-maps
f,: A, —L give a right limit for A then the £-maps F(f,) give a right
limit for F(A)). If this is true for arbitrary graphs D we say that F

preserves right limits. Similar definitions apply to left limits.

PROPOSITION 15. Let F : K-8 and G : £ K be functors such
that (F,G) is an adjoint pair. Then F preserves right limits and G

preserves left limits.

Proof.  Suppose that A is a D-diagram in K with a right limit given
by the K-maps £ A;—A. Applying F we obtain L-maps
F(ii) : F(A,)— F(A) which form a diagram-map
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F(f) : F(A)—T(F(A)) = FI'(A)), and we have to verify the universal
property. Let B be any object of £ and g : F(A)—>I_‘(B)' any diagram-
map, consisting of £-maps g, : F(A))—B. By the adjoint property
of F and G, we have a natural isomorphism K(4,G (B))= £(F(4), B),
where A4, B denote arbitrary objects of K, £, respectively. Applying
this isomorphism to the maps g, we obtain K-maps gF 4, — G(B)
which, by naturality, form a map of diagrams. Since A4 = lim A, there
is a unique X-map y* : A— G(B) such that g¥ = fi y* for all i. Going
back to £ by the natural isomorphism we deduce that there is a
unique L-morphism y : F(4) — B such that g; = F(L)y for all 1. This
shows that F(A) = lim F(A) and the other assertion is proved by a

dual argument. ®

Note. If K and £ admit right limits over D then one half of
Proposition 15 says that F o (lim) and (lim) o FP are equivalent
functors from XP to £, where FD is the functor from KP to £P
induced by F. This is a special case of Proposition 4 (ii) since if
(F,G) is an adjoint pair, so is (FP, GP), and clearly the functors
[oGand GP oI from £ to KP are equivalent.

If the Category K admits right (left) limits over arbitrary graphs
D, we say simply that K admits right (left) limits or that K is right
(left) complete. Some set-theoretical restriction on the graphs D is
necessary to avoid triviality, and this is implied by our conventions.
The graphs D considered are small, or lie in some fixed universe,
whereas the complete Category K will usually be large or lie in a
bigger universe. For example, the (true) statement that the Category
S of sets is complete (i.e. left and right complete) means that it
admits limits over graphs D for which V(D) and E(D) are objects of
S. One does not allow ‘‘Graphs’’ as big as & itself. We do not wish

to labour this point but will always have a fixed set theory O in
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mind, and all graphs, categories and groupoids are understood to be
constructed in §. In this sense the Categories fD, G, @ fDI, @I, Ql
are all complete, as we shall show in due course. The left com-
pleteness is easy; right limits in algebra are always harder, and we
postpone the proof of right completeness until we have dealt with
some special cases.

The easiest method of establishing completeness is to use the

following result.

PROPOSITION 16. The Category X is left complete if and only if
it admits products and difference kernels. It is right complete if and

only if it admits coproducts and difference cokernels.

Proof.  We prove the first assertion only. Let D be any graph with
vertex set | and edge set X = UXI.J. (i,j €I). Let Abe a diagram in K
over D with objects A, (i €I) and morphisms a, (x€X), where

a, A, —»AJ. if xeXij. For convenience, we write s(x), {(x) for the

source and target of the edge x, so that a, A A Suppose

s Ce(xy
that K admits products and difference kernels. Then we may form

products over the set X (i.e. left limits over the graph X with one

vertex for each edge of D and no edges). Let S = T 4 d

) x€X
T-1] 4 Since I is a functor from KX to K the maps
x €EX
a, A

s(x) N

t(x)’

s(x)ﬂAt(x) have a product =xUX a,: S—T. Now let

rR=1TT A; and let 7. : R— A, be the projections. By definition of
i€l

products, the morphisms Ts(x) R—>As(x) for x € X induce a

morphism ¢ : R— S, and the morphisms Toixy - R—»At(x) (xeX)

induce a morphism 7 : R— T. By hypothesis the two morphisms r

and ga from R to T have a difference cokernel f: L —»R, and we

claim that L = lim A, i.e. the morphisms f=1fn . L— A, form a left
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limit for A. To see this, consider any family of morphisms
g, : K—A, (1€l), and let g be the unique morphism K — R such that
gm; = §;- These morphisms form a diagram map from the trivial

diagram I'(K) to A if and only if g for all x€X, i.e.

s(x) % = 8¢(x)
g”s(x)ax = g"t(x) for all x. By definition of ¢ and 7, this is equiva-
lent to goa =87 Now f: L —R, being the difference kernel of oa
and 7, is universal amongst such maps g : K— R, and it follows
easily that L = lim A. This shows that X is left complete. The
converse is trivial since products and difference kernels are special
cases of left limits. B

In the Category of sets & the product ]E—[I A, is the ordinary

i

Cartesian product; its members are all families {ai}i €l with a €4 .
The coproduct lELI A, is the disjoint union of the sets 4, (i.e. the
union of disjoi;t copies of the A)). The difference kernel of maps
a, B: S—T is the subset of S on which a and 3 agree. The dif-
ference cokernel is the set of equivalence classes on T of the
equivalence relation generated by all pairs (sa, sB) with s€S.
These statements are easy to verify and show that & is a complete
Category. In general, the left limit of a diagram A in O, with sets
Ai and maps a,, is the subset of nAi consisting of all families
{ai}i ¢ Such that a.a = a; for all x : i —j. The right limit of A is
the set of equivalence classes on L A, of the equivalence relation
generated by all pairs (a, aa,) where a€4, and x: i—j. (Here we
assume, as we always may, that the 4, are disjoint and are subsets
of L1 4).

In most algebraic Categories left limits are easily constructed
using the left limits of sets as building blocks. The reason for this

is that one usually has forgetful functors to the Category & which
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have left adjoints and therefore preserve left limits (Proposition 15).
For example the Categories D, € and G each have two forgetful
functors V and E to the Category & and in each case these functors
have left adjoints of a rather simple form. The left adjoints of V in
the three cases are the ‘‘trivial functors’’ T, where T(A) is the
trivial graph, category or groupoid with vertex set A. (We define a
trivial graph to be one with no edges, and a trivial category or
groupoid to be one with no edges other than its identity elements).
The left adjoints of E are the functors Fg), Fe, Fg, respectively,
where F.(D(A)’ FG(A)’ FQ(A) are the absolute free graph, category
and groupoid on the set A. Fq)(A) consists of the disjoint union of
copies of the graph e—>@ , one for each element of A. Fp(4) is
a similar disjoint union of categories of type —>—«Q~, and
F@P(A) is a disjoint union of simplicial groupoids of type Al
0@0 - Clearly F((A) is the free category on the graph
Fq(A), and F@(A) is the free groupoid on the graph Fq(A). We shall
use these constructions later, but for the present we observe that
their existence implies that the forgetful functors V and E preserve
left limits. Hence if a diagram A in D, C or § has a left limit L
then V(L) = lim V(A) and E(L) = lim E(A) (left limits in 8). This
tells us where to look for left limits in these Categories and the

rest is mere verification.

PROPOSITION 17. The Categories D, C, G, EDI, C,. Ql admit left

limits.

Proof. If {AA})\ ¢ A is a family of graphs then the incidence maps
8% 8%:E(4") — V(A" induce maps 3., 5, : KT E4MH - T;f v(ah)

which define a graph A with E(4) = 1| E(4%) and V(4) = T1 v(ah).
It is clear that A is the product in D of the AN The edges from
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vertex 1 = {1‘)\} toj= {j)\} are all families {x)‘} where XA : i)‘—»j’\
in AN, If the AM are categories then 4 is a category with e, = {e.A}
and multiplication defined by components : {x)‘} {y’\} = {x)\y)‘}. 1
Since the projections 7" : A— A" are then category maps it follows
that A is the product in € of the Ul Similarly, if the AN are group-
oids then A becomes a groupoid if we define {x)‘}'l = {(x)\)'l} , and
A is then the product in 9 of the A’\. Again, if a;,a,: X—-Y are
graph maps then the vertices 1 of X such that lg = ia2, and the
edges x of X such that xa, = xa, form a subgraph K of X which is

the difference kernel in D of a, and a,. If a;, a, are category-maps

(groupoid-maps) then K is a subcategory (Subgro:ilpoid) of X and is
the difference kernel in C (in §) of @, and a,. The left complete-
ness of 9, € and Q follows from Proposition 16, and the proof of that
proposition shows that in all cases lim A can be constructed as the
subgraph, subcategory or subgroupoid of TT A’\ consisting of all
vertices and edges whose projections in the AN are compatible with
the maps of the diagram A.

For i)l’ @I, Ql the construction is somewhat different. Here the
vertex set is fixed and only the identity map on I is allowed as
vertex map. We now have a family of forgetful functors Eij’ where
Eij A4) = Aij and each of these has a left adjoint (which the reader
may construct for himself). Accordingly, if products exist in these
Categories we must find them by taking products separately on all
the (i, j)-pieces. It is easy to check that if {A/\})\ cAisa family of
I-graphs then the graph A with vertex set I and with AI.]. = -I;rAf‘]
for all 1, j is in fact the product in ,(DI of the AA, and also that when
the AM are categories (groupoids) this A carries a natural category
(groupoid) structure which makes it the product in €, (in §)). As

for difference kernels, if a,,a, are morphisms X —Y in .@1, their

a
2
difference kernel in D is in fDI and is therefore their difference
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kernel in fD[ . The same applies to GI and QI’ and the result
follows.

Note. When we write 1] AM or lim A etc. for a diagram of graphs
categories or groupoids we shall always mean the product or limit
in the appropriate Category 9, C or § even when the A)‘ all have
the same vertex set. Thus Al x A! means A3 (simplicial groupoid
with four vertices), not Al which is the product of A! and A! in the
Category of groupoids with two vertices.

There is one other general result on limits, closely related to

Proposition 15, which will be used in many special cases later. It

says essentially that right limits commute with right limits (and left-

with left). Let K be any Category and let C, D be arbitrary graphs
with vertex sets | and ] respectively. It is easy to see that the
diagram Categories (K€)P and (KPYC are isomorphic. A C-diagram
in KD assigns to each i €] a D-diagram consisting of a family of
objects {Aij}]. ¢; and a family of morphisms a,: A;;— A, where
d: j—j'is an edge of D. It assigns to each edge c: i— i’ of C a
D-map consisting of morphisms a; Aij _’Ai/j' Thus an object of
(KP)YC consists of objects A;; and morphisms a, , a_; (of X), as
above, satisfying the relations a;

=a By transposing

a ./ ci a.’! ;.
all pairs of suffixes we obtain thed ci:rrespoild;ndg object of (KC)P.
For simplicity we denote both diagrams by A and call A a
(C,D)-diagram in K. The morphisms A — B of (K€)P or (KP)C are
then all families of K-maps ¢,; : A;;— B, compatible with the maps
a.. and B.. in the two diagrams A and B. Thus the two Categories
(KC)P and (KP)C can be identified with each other.

Now suppose that K admits right limits. Then the canonical

functor Iy K —XP has a left adjoint lim : KP - X, and these two
D

functors induce an adjoint pair of functors K€ = (KDHC, Replacing
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(KP)YC by (KC)P, we see that the canonical functor Iy: KC— (K&P
has a left adjoint; in other words, K€ admits right limits over D

(and this for all graphs C,D). Furthermore, the functor Ii_crp: K€K,
being a left adjoint, preserves right limits over D, by Proposition 15.

Thus, for any (C,D)-diagram A, lim (lim A) = lim (lip A), and we have
C D D C

PROPOSITION 18. If K admits right limits then, for all graphs
C,D, the functors lip o lim and lim o lim from KOHP = (KPYC to K
C D D C

are naturally equivalent. A similar statement is true for left limits.l

Note. It is not true that K€ XD is isomorphic with (KC)D and
(KP)C, because of the lack of ‘‘identity edges’’ in the graphs. One
may, without loss of generality (but with some loss of convenience)
restrict C and D to be categories and consider only diagrams C—K
etc. which are category-maps. In this case the functor Categories
(KE)YP, (KP)C and K€ *D are all isomorphic, and the functor lim

C XD
is also equivalent to the two composite limit functors.

Exercises
1. Show that 9 admits right limits.

2. Let q, B be the two groupoid-maps from A° to Al. Show that

the difference cokernel in § of a and 8 is an infinite cyclic group.

3. Show that the forgetful funtor E : § -8 does not have a right

adjoint. (Hint: show that E does not preserve right limits).

4. Prove that if T, T' are topological spaces with subspaces I, I,

then m(Tx T', IxI') 2 a(T, ) x a(T, 1).



CHAPTER 8
Universal morphisms in 9, C and §

In order to prove the existence of right limits of diagrams of
graphs, categories or groupoids, it is convenient to separate the
roles of the vertices and of the edges. For the vertices we know
what to expect. The forgetful functor V has a right adjoint A in all
three cases (A(l) is the simplicial groupoid with vertex set I, con-
sidered as a graph, a category or a groupoid according to the
context). Hence V preserves right limits (Proposition 15), that is,
the vertex set of a right limit of groupoids (etc.) is the right limit of
the vertex sets. Given a diagram A of (say) groupoids AN with
vertex sets I* we can start by constructing I = lim I and looking
for an appropriate [-groupoid. We show now that one can pass from
the given diagram to a diagram in @I (where the problem is often
easier) by means of ‘‘universal morphisms’’ AN = BA induced by the
canonical maps I 1. The construction is a special case of right
limit and includes such basic constructions as free categories, free
groupoids and free products of groups. Furthermore, we can solve
the word problem in this special case, which is not possible for
general right limits.

Let 6 : A— B be a groupoid-map and write [ = V(A4), J = V(B),
o=V(®) :1—]. Let T(I), T(J) denote the trivial groupoids with
vertex sets [ and J respectively. Then o induces a groupoid-map
T(0): T(I) - T(J) and we have canonical injections T(I)— 4, T(J])— B
making the diagram

61
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T
(0 @

6 5
commute. If this diagram is a push-out square in §, we say that 6
is a universal groupoid-map. Thus 6 is universal if, for every
groupoid-map ¢ : A — C whose vertex map is of the form 7 = g7*,
there is a unique groupoid-map ¢* : B— C such that ¢ = 0 ¢* and
V(g*) = r*.

Suppose that we are given the groupoid A with vertex set I and
the map o : I - J. Then, by the uniqueness of push-outs, the
groupoid B and the map 0 (if they exist) are determined up to iso-
morphism. We are therefore faced with two problems: (i) to prove
the existence of universal morphisms and (ii) to find the structure
of B, i.e. to solve the word problem for B. The same problems can
be posed for graphs and categories, and we shall deal with these
first. The definitions of universal graph-maps and universal
category-maps are exactly as above with § replaced by P or C. In
C, T(l) denotes the trivial category with vertex set [, and in D, T(I)
denotes the graph with vertex set I and no edges.

For graphs the solution is trivial. Let X be a graph with vertex
set I and let g : [ - J be any map. We form a new graph X’ as
follows: the vertex set of X7 is J, the edges of X7 are just the
edges of X, and the incidence maps E(X)— ] are 810 and 820,
where 81, 82 are the incidence maps of X. Then the identity map
on E(X), together with ¢ : I — J, gives a graph map o* : X — XY, and
we leave it to the reader to check that ¢* is the required universal

graph-map.
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Now suppose that A is a category and ¢ : | — ] a map, where
[ = V(A). We may view A as a graph and form the graph A? and the
canonical map 4 — AY, which we now denote by o, Letgp: A-C
be any category-map whose vertex map is of the form 7 = g7*. Then,
by the universal property of o, in D, there is a unique graph-map
¢, - A7 C such that ¢ = 0, ¢, and V(¢,) = *. Of course A7 is
not in general a category, and 0., ¢, are not category-maps. How-
ever, the graph-map qSl from A into the category C induces a
category-map ¢, P(A%) — C, where B(A%) is the category of

directed paths in A% (see Ch. 3), and we have a commutative diagram

I
A - A7 ~B(4%)

P

where p is the inclusion map of 47 in P(A%) (with the usual identifi-
cation of edges and paths of length 1). Since ﬁ(AO) has the same
vertex set as AY, namely J, the map g, =0 p: A—>13)(AO) has vertex
map o and looks very like the hoped-for universal map. The only
snag is that it is not a category-map since we have not yet used the
category structure of A. If x is an edge of A we denote by x¥ the
corresponding edge of AY to avoid ambiguity. If xy = z in A then
x?y9 is defined in P(A%) and is a path of length 2; it cannot be
equal to 2% which is a path of length 1., We must therefore replace
ﬁ(Aa) by an image category in which x? y7 and z% become equal.
Also, if i? = j, we must equate the paths e/ and e; (of lengths 1, 0,
respectively).

Let p = x9x% .xJ be an edge of B(A), that is, a path of length

172

n in A7, from j to j' If for some v (1 < v < n) the product x, x ‘1
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is defined in A and has the value x, then x7... x% . x%x% ... x7 is
1 v-1 v+2 n

a path from j to j'. Also if some x, (1< v < n)is an identity element
of 4 then xJ... x7_ x7.. ... x% is a path from j to j. (If n =1 this is
the empty path at j). We call these two types of modified paths
elementary reductions of p, and we write p~p’ if there exist paths

P =Py Py --es Py = P such that, for each r = 1,2, ..., k-1, P, is an
elementary reduction of p,, or vice versa. This is an equivalence
relation on the edges of ﬁ(Aa), and equivalent paths have the same
source and the same target. Thus the equivalence classes [p] form
a graph with vertex set J. We denote it by U, (A). Ifp~p, q~¢
and pq is defined in P(A%), then p'q' is defined and pq~p'q, so
U,(4) is a category with multiplication [p][q] = [p q] and identity
elements [e].] (G €J]), where e; is the empty path at j. Further, if 7 is
the canonical map p +— [p] from B(4%) to U, (4), then the map

05 =0,m=0,un from 4 to U,(4) is a category-map; for if xy = z in
A then x%y9 ~ 29, which implies [x?] [y?] = [2°], and if e, is an
identity of A then &7 ~ e; (j = i), which implies that e, maps to the
identity element [ej] of U_(A).

Now if xy = z in A, then the paths x%y? and z? have the same
image in C under the category map ®,, namely (x¢)(y ) = z¢p. Also
e? has the same image e;¢ as the empty path & (j = 16). Since ®,
is a category-map, it follows that any elementary reduction of a
path p has the same image in C as p. Hence equivalent paths have
the same image in C and there is a category-map ¢3 U (A)—-C
such that the diagram

g

A P — T, U (4)
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commutes. Thus the category-map ¢ : A — C factorises through
U_(4) in the form ¢ = 044, Where o, = g, pm and V(gs) = V(g,) =r*.
The map (;/>3 is uniquely determined by ¢ since U_(4) is generated
by the image of A under 0, except possibly for some isolated
identity elements whose images are determined by the vertex map

r*. This shows that oy is the universal category-map corresponding

to the vertex map o applied to A.

PROPOSITION 19. (i) For every I-category A and every map
o : I -] there is a universal category-map A— U_(A) with vertex
map o.

(ii) U is a functor from @I to G], uniquely determined up to
natural isomorphism by o.

(iir) If 7 - J—K thenU__=U _oU_. Products of universal

category-maps are umversal .

Proof. (i) has already been proved.

(ii) If 6 : A— B is a morphism of Gl’ then the universal
category-map B —U_(B) composed with 0 gives a category-map
A—U_(B) whose vertex map is o. It therefore induces a unique

map U _(60) : U_(A)—U_(B) such that the diagram

B ~U_(B)

commutes, It is clear that this gives us a functor U_ : @I—>@]. We
i{now also that U_(A) is determined up to isomorphism by A4 and o,
and it is trivial to check that these isomorphisms are natural.

(iii) Let p=o07:I - K. If ¢ : A—C is any category-map whose
vertex map has p as a left factor, then ¢ induces ¢, : U (4)—C
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The vertex map of ¢, has 7 as a left factor, so ¢, induces

¢2 1 U (U, (A))—C. If follows easily that the product of the
universal maps A —U_(A)—U_(U_(A)) is universal with vertex map
p, and hence that U_(U_(A4)) = Up(A) (natural equivalence of

functors). m

When we turn to the corresponding problem for groupoids we
find an unexpected bonus. If the category A above happens to be a
groupoid then U_(A), being generated as a category (apart from
isolated identity elements) by the image of a groupoid, is itself a
groupoid (see Proposition 7, Corollary 2). The categories T(I),T(J)
are also groupoids and the maps in the diagram

T
) G

A > U, (4)

are all groupoid-maps. Since this is a push-out square in C it is

a fortiori a push-out square in §, so the universal category-map
A—U_(A) is also a universal groupoid-map in this case. (We are,
of couse, identifying § with a sub-Category of C by the forgetful

functor). Hence we have

PROPOSITION 19°. (i) For every I-groupoid A and every map
o : I — ] there is a universal groupoid-map A—U_(A) with vertex
map o. ,

(11) U, is a functor from Ql to QJ, uniquely determined up to
natural isomorphism by o. It is the restriction to 9[’ Q] of the

functor U_ of Proposition 19.
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(11i) If 7. J—K, then U =U o U . Products of universal

groupoid-maps are universal groupoid-maps. B

PROPOSITION 20. Let X be a graph with vertex set I, and let o
be map from I to J. It A is the free category (free groupoid) on X
then U_(A) is the free category (free groupoid) on the graph X°.

Proof.  Check the universal property; or see the examples below. B

Example 1. Free categories. Any graph X is of the form Xg, where
X0 is the result of ‘‘pulling X apart’’. More precisely, let E = E(X)
and let X be the absolute free graph Fj)(E) (see p.56). X, can be
described as the product T(E) x [1], where [1] denotes the graph
o—> o, and T(E) is the trivial graph with vertex set E. Or

again, X, = Ll [1], where Ll denotes coproduct in D, which is
x EE

obviously just disjoint union. There is a uniqhe graph-map X0-+ X
sending each edge to itself and this map is a universal graph-map.
Thus X = Xg, where o denotes the corresponding vertex map.

Let CObe the free category on XO' Then C0 = F@(E) = 1l {13
x€EE

where {1} denotes the free category —>—— generated by [1].
One sees easily that U,(C,) is the free category on X, either by
checking the universal property or by noticing that the free category

functor B : P —C is a left adjoint and so preserves push-outs.

Example 2. Free groupoids. The free groupoid on the graph [1] is
the simplicial groupoid Al. The free groupoid G, on X is therefore

1
G, = Fg (E) =xJELE A", and as above, U_

X. Proposition 20 is now seen as an application of the relation

UO"T = U’TO Ucr'

(G is the free groupoid on

Example 3. Free products of groups. Let G be a totally discon-

nected groupoid, i.e. the disjoint union of groups G(i €I). Let J be
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a one-element set and ¢ the unique map / —J. Then U (G)is a
group, and there are canonical group-maps yi . G —U_(G) induced
by G—-U_(G). The universal property of U_(G) says that for any
family of group-maps 6’ : G' —H there is a unique group-map

6 : U (G)—H such that 6" = 0 for all i €. This is precisely the
statement that U_(G) is the coproduct in 91 (the Category of groups)
of the groups G, i.e. (definition) U, (G) is the free product of the
groups G'. Free products of semigroups-with-1 can be treated in

the same way.

Exercises

1. Given a J-groupoid B and a map ¢ : [ —J, let W_(B) denote the
graph whose vertex set is [ and whose edges from i1 to i2 are (in

one-one cotrespondence with) the edges of B from iIU to 1,0. Show

2
that W_(B) has a natural groupoid structure and that W_ is a functor
from 9] to QI. Show also that W_ is a right adjoint to U, : QI—>§].

(Hence U_ preserves right limits, which is easy to check directly).

2. Let 61

—_—_—
0 1

A A
S
A2 A

be a push-out square in §. Show that if 091 is a universal groupoid-

—_—

&

map, then so is ®,. In particular, if A, and A, are trivial groupoids
and 61 is arbitrary then ¢, is universal. (Hint: the forgetful functor

V : § -3 preserves push-outs).

CHAPTER 9
Right limits in C and §

The existence of right limits in 9 has been set as an exercise
and is easy enough. One simply takes right limits of the vertex
sets and the edge sets separately and verifies that the resulting
limit sets have a graph structure with the required properties. In C
and Q this construction fails in general (see Exercises 1,2,3, p.59)
but it is clear that for coproducts it still works. Coproducts in € or
§ are just disjoint unions, and we use the notations L A’\, Al A2
etc. According to Proposition 16 we need only show, therefore, that
difference cokernels always exist in C and §.

Let 0, ¢ : A— B be category-maps with corresponding vertex
maps 0, ¢, : [—], and let 0y : J—K be the difference cokernel of
6, and ¢ (in d). Then o,
o: B—»Uo0 (B), and if y : B—C is any category-map such that

induces a universal category-map

0y = ¢y, then y has the form y = gy*, where y* : UU0 (B)—Cis a
category-map, uniquely determined by y. It follows immediately from
the definitions that y is the difference cokernel in € of § and ¢ if
and only if y* is the difference cokernel of ' = 6o and ¢' = ¢o.

0, ¢': A»B'=U_ (B)). Now if x is any edge of 4, the edges x0/,
x¢' of B'have the same source and the same target, and this makes
the rest of the construction easy. For edges p, q of B' we write

p~q whenever p = b, (a 0" b, q=b (a ) b, for some a€ 4, b, b, €B!

This relation on B’ generates an equivalence relation =, and the

69
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equivalence classes form a graph D with the same vertex set K as
B'. Since p~ q implies bp ~ bq and pb ~ gb, it is clear that p=q
implies bp =bq and pb=gb. Hence p =q and p'=q’ implies
pp'=gp'=qq’ (whenever pp'is defined). Thus D inherits a category
structure from B’ and the canonical map # : B'— D is the difference
cokernel (in C) of ' and ¢" It follows that 6, ¢ have difference
cokernel g7 : B—D. If A and B are groupoids, and 6, ¢ are
groupoid-maps, then B’ = UU0 (B) and D = Brx are groupoids, and
om: B—D is the difference cokernel in § of § and ¢. Thus C and
Gradmit right limits.

For right limits in .,(DI, @I and Ql we may proceed as follows.
Let A be a D-diagram in one of these Categories, and let T(I) denote
the trivial graph, category or groupoid with vertex set I. Let D' be

the graph obtained by adjoining to D one new vertex 0 and new edges

xy : 0— X one for each vertex A of D. Let A'be the D"diagram in
which D maps as before (with A r—»AA, say), 0 maps to T(I), and Xy
maps to the canonical embedding T(I)—-»AA, for each A\. Then the
right limit of A"in D, C or § is (with the obvious abuse of language)
the right limit of A in ,,(DI, G[ or Ql' In particular, we may recover
right limits in the Category of groups by adjoining the trivial group
to all diagrams in this way and taking limits in the Category of
groupoids.

Combining these results with Proposition 17, we have now

proved
THEOREM 3. The Categories P, C, Q, fD[, @[, QI are complete. ®

The presentation of categories and groupoids by generators and
relations is a special case of the above construction.. Suppose that
we are given a graph X and a set R whose members are ordered

pairs of category-words on the alphabet X (i.e. ordered pairs of

RIGHT LiMiTs IN C aND § 71

edges of the free category 13)(X) )- Let FP(R) be the absolute free
category on R. Then there are unique category-maps 61,

02 : F@(R)—J_’)(X) given by rGl =1, r02 =1, where r = (r;, r,) €R.
If ¢: ﬁ(X)—»C is the difference cokernel (in C) of 6, and 6, we
write C = cat (X; R) and say that C is the category with generators
X and defining relations R (or defining relations t, =1, (ry) r2)€R).
We also say that the triple (X, R, ®0) where ¢, : X—C is the
restriction of ¢ to X, is a presentation of C in the Category C.1f
A is any category and ¢ : X — A is a graph-map, we say that the
relations R hold in A under the map a if for all (r,, r,) €R we have

rla* =r a*, where g* : ﬁ(X)——»A is the category-map induced by a.

The catzgory C = cat (X; R) and the canonical graph-map by X—C
can then be characterised by the following properties:

(i) the relations R hold in C under bos

(ii) if the relations R hold in A undera : X — A4, then a = ¢Oa'
uniquely, where a’': C— A is a category-map.
Note that if R is empty then so is F@(R), and C = B(X).

Similarly, if R is a set of ordered pairs of groupoid-words on
the alphabet X (i.e. edges of #(X)) we obtain a groupoid
G = gpd(X; R) as the difference cokernel in § of the groupoid-maps
01, 92 : FQ(R)—HT(X) given by 10, = s r92 =1, (r=(ry,r)) €R), and

all the above remarks apply (with obvious modifications).

Exercises

1. Let C = cat (X; R), where X has vertex set [, and letg : [ -]
be any map. Let R be the set of pairs o rg) ((r;, r,) €R), where

r, denotes the image of r, in P(X%), i.e. re-interpret the words r, as

I,
k
words on the alphabet X. Prove that U_(C) = cat(X%; R°). Prove
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also that U, (C) = cat(X; RUS), where S is the set of pairs (e; €9

such that ig = 1'0.

2. Show that the forgetful functor @ —(C has both a left and a right

adjoint (hence preserves left and right limits).

CHAPTER 10
The word problem for U _

Let A be a category with vertex set I, and let o be a map from
I to aset J. Then U_(A) is a category with vertex set J and its
edges, according to the construction in Ch. 8, are equivalence
classes of (directed) paths in the graph A°. The equivalence relation
was defined in terms of “‘elementary reductions’’ of two types:
deleting identity elements and multiplying in A when possible. We
shall say that a path in A7 is o-reduced if it has no elementary
reductions. (See p.64 for the precise definitions).

We shall identify edges of A with their images in A to simplify
the notation. We cannot, of course, do this with vertices. A path p
in A9 is then either one of the empty paths e;(jeJ)or is of the form

Xy X, ... X (strictly a sequence (x, x,, ... x_)) where the x  are

edges of A satisfying incidence relatfons x,8,0=x,,,6,0
(v=1,2,...,n-1). The g-reduced paths are of two types:
(i) the empty paths e GeD;
(ii) paths x . x, (n>1), where the x , are non-identity
510 (v=1,2...n-1) but such

are not defined in 4, i.e. xy52 #x,

1 X
edges of A satisfying XVSZU =X,

)

that the products x  x +191

w=1,2,...,01).

v+1

THEOREM 4. Each edge of U_(A) is represented by exactly one

o-reduced path.
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Proof. It is clear from the definition of equivalence of paths that
each equivalence class contains at least one o-reduced path. To
show that it contains at most one, we adapt the method of van der
Waerden for the case of free groups.
Each o-reduced path has a source and target in J. Let S]. be the
set of all o-reduced paths with target j. If x is an edge of A from
i to i), not an identity element, and if io = j, i'0 = j', we define a
map p, : Sj —>S].fas follows:
@ ifp €Sj is empty then pp = xeS].f;
(ii) ifp = X Xy X € S]. (n>1) there are three cases:
(a) if the product x, X is not defined in A then
PP, =Xy Xyt X X;
(b) if x_x=x"in A and x"is not an identity element then
PP, = Xy Xy X4 x';

(o) if X, X=e.in A then Pp, =X Xy X | if n >1 and

e
PPy = €’ if n =1.
In all cases we obtain pp, 651. , so p_is indeed a map from S]. to S]./.
For x = e, we also define p_to be the identity map on S, .
X 10

Consider now the map p : 4 —d defined on vertices by i3S,
and on edges by x —p . This is clearly a graph-map and it is a
routine matter to check that Py = Px Py whenever the product xy is
defined in A. Thus p is a representation of A, i.e. a category-map
from A to d. Since p identifies any two vertices of A which are
identified by o it induces category-maps p': l3(AU)—-> Sand
p": U (A)—3d such that the diagram

A > P(4°) T . U_(A)
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commutes, where the horizontal arrows are the caqonical maps. (The
fact that S is large is obviously irrelevant here since it can be re-
placed by a small subcategory). The reason for the commutativity
relation 7p" = p' is that 77p” = p = 7p' and Ar generates B(A°).

To prove the theorem we have to show that distinct o-reduced
paths have distinct images in U_(A) under the map 7, so it is enough
to show that they have distinct images in & under p. By definition
p' sends the edge x of A (or strictly, its image in A°) to the map Py
Since p'is a category map it sends any path p = Xy Xy... X in A% to
the map Pp = px1 p, ---p, and we want to show that the maps [
for p a-redgced, are all distinct. But if p = Xy Xy oo X (n>1)is a
o-reduced path from j to j' then the effect of the map pp on the
element e of Sj is to send it to & px1 pxz... pxn =X pxszs... Py
=...=X; X,... X =p. Ifpis the empty path e then P, is the
identity map on SJ., and again Py sends e; to p. Hence, if the
o-reduced paths p, q are such that Py =Py Sj—>Sj/, then p, q have
the same source j, and p = € Pp=8pPy=a This proves the

theorem. B

Note. The theorem and its proof are valid for groupoids since the
construction of U_(A) in this case is exactly the same as for
categories; the inverses take care of themselves. The theorem
solves the word problem for U_(A) (modulo that for 4) since, if we
want to know whether two paths in A” represent the same element
of U_(A) we need only apply successive elementary reductions to
them until we arrive at o-reduced paths, and check to see whether
the reduced forms are the same or not. This can be done if we can
tell (i) when products are defined in A and (ii) when two products in
A give the same element of A. (Of course o must be given in such a
way that we can tell whether or not two vertices of A have the same

image).
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COROLLARY 1. If two distinct edges of A have the same image in
U_(A) then they are identity elements at vertices i,i' such that

. o/
1o0=10. 10

COROLLARY 2. If B is a subcategory of A, and o' is the restriction
of o to the vertices of B, then U_/(B) can be identified with a sub-

category of U _(4).

Proof. B can be identified with a subgraph of A%, and then the

o'-reduced paths in B are a subset of the o-reduced paths in A”. m

COROLLARY 3. (= Proposition 9). If G is the free groupoid on a
graph X then (1) V(G) = V(X), (ii) X is embedded in G, (iii) every

non-identity of G is uniquely expressible in the form

€. €,
1 X, 2.. X T(n>1), where x,, are edges of X, the €, are t1, and

1 1

X

no adjacent pairs xx*~ or X"~ x occur, and (iv) the identities of G are
not so expressible. Conversely, if G satisfies (i) (iii) and (iv) for a

subgraph X, then X generates G freely.

Proof.  The free groupoid on X can be constructed as U, (G,
where GO is the disjoint union of simplicial groupoids G* of type
A1, one for each edge x of X, and where ¢ is determined by the
incidence maps of X. (See p.67, Example 2). We denote the non-

identity edges of G* by x and x°!.

Then the only products of non-
identity edges which are defined in G, are the products xx"! and
x"1x, so the o-reduced paths in G, are precisely the empty paths and
the paths x:1 x;2 x:” described above. The corollary follows

now from the theorem. m

COROLLARY 4. (The word problem for free products of groups
and semigroups-with-1). Let AA(A €N and B be semigroups-with-1,
and let O* : AN B be homomorphisms (i.e. morphisms of @1). Then
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B is the free product of the AN relative to the maps 6’)\ (i.e. their
coproduct in Q) if and only if for every element b € B there is a
unique sequence Ay, Ay, ..oy A (n>0) in A, with A,# A, A<v<n-1),
and unique elements a,, #1in A Y (1<v<n) such that b = by b,...b,
where b, = ay@ Y. The empty product stands for 1. In particular,
the 0" are all injections and for A # y the images of AMand A* in B

have only the identity in common. The same is true for free products

of groups (coproducts in Ql).

Proof. Let A be the disjoint union of the At (their coproduct in e
or §, as the case may be). Then their coproduct in @1 or Ql is
U_(A), where o maps the vertices of A to a single vertex. Assuming,
as we may, that the AN are disjoint, the product aa’ of edges of 4 is
defined if and only if a and a' lie in the same ar, Consequently the
o-reduced words are precisely the empty path and the paths

aja,...a (n>1) satisfying the stated conditions.

Exercises
1. Show that U_(A) is a groupoid if and only if A is a groupoid.

2. Show that a groupoid-map 0 : A — B is universal if and only if
(i) AQ and the identities of B generate B and (ii) whenever

(a1t9) (a2(9) (an0) =1 (n>1) in B there exist 1<r<s<n such that
ar at‘

: 173 R B
41 o 8g = 1 in A. Here Xy Xpeon Xy = 1"’ is short for

“xq Xy..o X, i defined and is an identity element’’.



CHAPTER 11
Free products of categories and groupoids

Coproducts of categories and groupoids are disjoint unions and
might be called ‘‘absolute free products’’. The usual free product
of groups is obtained from the absolute free product by imposing
extra relations which equate all the identity elements and so might
be called ““free products with identities amalgamated’’. We shall
use free products intermediate between these extremes, which in-
clude as a special case coproducts in the Categories GI and QI.
The solution of the word problem for these products is again con-
tained in Theorem 4. T

Let 0" : A B (A €A) be category-maps with vertex maps
o)‘ : I)‘—>]. We call B the free product of the categories ar (with
respect to the maps 0)\) if the following universal property holds: for
ALgA

any family of category-maps ¢ — C whose vertex maps are of

the form o’\r : I’\

—K (where 7: ] »K is independent of A), there is a
unique category-map ¢ : B —C such that qSA = 0)\95 for all AeA.
Suppose that this is true, and write 4 = il A)\, =11 N, Then the
maps 6* induce a map 0 : A - B with vertex map o : [ - J induced
by the o’\ We claim that ¢ is surjective and that B is canonically
isomorphic with U_(A). For let ]0 =Io, let Oy : I—>]0 be the map
induced by ¢ and let a : A——»UC‘,0 (A) be the canonical map. If the

AN are all empty it is easy to see that B is empty, and our assertion

is valid. In all other cases J is non-empty and there is at least

tsee p.73. A list of theorems with page references is given in the index.
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one map 7 : ]~—>]0 such that o7 = 0,. Hence, by the definition of

free product, there is a unique catef)gory-map a*: B-U_ (4)
(induced by the restrictions of a to the A)\) such that fa* =a. Also
there is a unique map p : Jo —/J such that oyu = 0, so 6 induces a
unique category-map 6* : UU0 (A)— B (with vertex map ) such that
af0* = 0. It follows easily that a* and 6% are inverse isomorphisms.
This shows that B is determined up to isomorphism by the 4 and
the a)\, and we write B = *) e A (A)‘; o)‘), which will often be
abbreviated to B = * A)‘. If the ah are subcategories of B and the
9)\ are the inclusion maps, we say that B is the free product of sub-
categories AA. Note that if the Ar are all groupoids and B = *A)\,
then B = UUO (.LL A)\) is also a groupoid, and the universal property
for free products holds in § as well as in C. There is therefore no
need to consider free products of groupoids separately except for
special purposes.

If the AN and the o™ 1)\«»] are given, and if J = UIAU/\, then
it is clear that UU(.U.A’\) (where o : .U_ 1’\——>] is induced by the o’\)
is in fact the free product of the AN with respect to the obvious
maps. Corollary 2 of Theorem 4 shows that U )\(A/\) is embedded in
this product. The subcategory generated by the image of Ar
coincides with this subcategory UU/\(AA) if o)\ is surjective; other-
wise it differs from it only in the deletion of certain isolated identity
elements. We sum ﬁp in the following proposition; the reader can

check any missing details for himself.

PROPOSITION 21. (i) Let AN (M e A) be categories (groupoids)
with vertex sets I and let o)‘ : IA—ej be maps such that | =U1)‘a)‘.
Then the free product *(AA; o’\) exists. (i1) Let 9’\ . AN B \eN)
be arbitrary category-maps (groupoid-maps) and let B be the sub-
category (subgroupoid) of B generated by i Then B = % AM with
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respect to the 0)\ if and only if the maps 9)‘ are all universal and B

is the free product of the subcategories (subgroupoids) B\ m

We may now restrict attention, for most purposes, to free
products of subcategories or subgroupoids, and the next theorem

gives various characterisations of this situation.

THEOREM 5. Let BM (A€ A) be subcategories (subgroupoids) of
the category (groupoid) B, and let V(B = JA V(B) = J. Then the
following are equivalent:

(i) B is the free product of the B

(i1) if gb)‘ . BM . C are morphisms which agree on common
identity elements of the BA, there is a unique morphism ¢ : B—C
such that the restriction of ¢ to B)\ is ¢’\ for all e ;

(111) U]A ='J; for every non-identity element b of B there is a
unique sequence A, Ay oess A e\ with A, # A1 (1<v<n-1) and
unique non-identity elements bVEB Y such that b = b1 b2 bn; and
for identity elements b there is no such factorisation with n>1.

In the case of groupoids these are also equivalent to

(iv) the B} generate B, and whenever b, b,...b isan identity
of B, (where n>1, b,eB v and A, #A

an identity.

u+1)’ at least one of the b, is

Proof.  (ii) is a restatement of the definition of (i) in this special
case. (i) is equivalent to the statement that the map 1 BA—> B
induced by the inclusion maps is universal with surjective vertex
map, and (iii) is a restatement of this in terms of the solution of the
word problem given by Theorem 4. Also, (iii) implies (iv) trivially,
for categories as well as for groupoids. Finally, in the groupoid
case, suppose that (iv) is true. Then the first and last statements

in (iii) are true. Also every non-identity b of B can be written as a
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product of edges of the B* and hence (by multiplying in the B A
where possible and omitting identities) as a reduced word, i.e. as a

product b = b, b, ... b of the stated type. If b=c, c c,, is also

g
a factorisation of this type, then b, by... b, cn;l 02'1 01'1 is an
identity of B, so by (iv), b, and cn'q1 both lie in B” for some A, and
their product is an identity. Thus ¢ =b_, and induction shows that

the two factorisations are the same. B

PROPOSITION 22. (The associative law for free products). Let
BA()\eA) be subcategories (subgroupoids) of the category (groupoid)
B, and suppose that A = Ui €l Ai, where the Ai are mutually disjoint.
Let B! be the subcategory (subgroupoid) of B generated by the BN
for )\EA.. Then B = *) e A B)\ if and only if (1) B - *ye A B)\ for

1

all i €l and (ii) B = %, el Bi.

Proof.  Check the universal properties as stated in Theorem
5(ii).m

Similar results hold for arbitrary free products but are more trouble-
some to state.

It is clear that free products can be thought of as right limits.
In the notation above, to say that B is the free product of the 4t
with respect to the oM is to say that B is the right limit of the
diagram whose objects are the ar and the trivial categories
T(IA) , T(J) and whose morphisms are the injections T(IA)—>AA and
the maps T(a)\) : T(IA)—> T(J) (plus the assertion that J =U1Aa)\).
Or one can easily construct maps A . K —I* whose right limit is J
(with respect to the 0)\) and then B is the right limit of the diagram
with morphisms T(r’\) : T(K)—>A’\. Consequently the formation of
free products commutes with other types of direct limit (see
Proposition 18). We state some useful special cases and leave the

reader to supply the details.
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PROPOSITION 23. (i) Let oM - AN B be category-maps with
vertex maps P IA—»] and let r: | —»K be any map. If B = * AN
with respect to the g then U (B) ==xU A (A)‘) with respect to the
maps induced by the 0’\ and 7. The same 1s true for groupoids.

(i) Let 0)\, o)t be as in (i) and suppose that A)\ = cat(XA; RA).
Let X be the graph with vertex set UI/\UAC], and edge set
il E(XA), with incidences determined by the maps X} 4MoB.
Let R be the union of the images of the RN in ﬁ(X) X P)(X). Then
B = A" if and only if B = cat(X; R). The same is true for groupoids

with the obvious changes of wording. B

Exercises

1. Show that any free groupoid with no trivial components is the
free product of subgroupoids which are either infinite cyclic groups

or simplicial groupoids of type Al

2. Show that if the groupoid A4 is the free product of subgroupoids
ah then, for A +# p, AaMn A" is trivial.

3. Define free products of graphs by appropriate universal proper-
ties and determine their structure. Show that if XA——»X()\EA) is a
free product diagram of graphs then rr(X)\)—m(X) (A€A) is a free
product diagram of groupoids (cf. Proposition 23 (ii)).

4. Suppose that the connected groupoid G is the free product of
subgroupoids A and B. Prove that if A is a full subgroupoid then

B is unicursal.

5. Show that the forgetful functor § —C has both a left and a right

adjoint, and therefore preserves both left and right limits.



CHAPTER 12
Quotient maps of groupoids

From now on these notes will be concerned almost exclusively
with groupoids. It is helpful to analyse groupoid-maps by defining
classes of well-behaved maps and using these to factorise arbitrary
maps. We have already met two such classes: the universal
groupoid-maps and the (deformation) retractions. In the case of
group-maps these reduce to isomorphisms and identity-maps
respectively. We now introduce the class of quotient maps, which
includes all group homomorphisms, and we shall see that most of
the standard properties of group homomorphisms carry over to this
larger class of groupoid-maps.

A subgroupoid N of a groupoid A is a normal subgroupoid if
(i) N contains all the identity elements of A and (ii) x EIV“, aeAij
implies al

kernel of 8 (denoted by Ker 6) to be the set of all elements of A

xa EIV].].. For any groupoid-map 0 : A — B we define the

which map to identity elements of B. Clearly Ker 0 is always a
normal subgroupoid of A, and we now show that every normal sub-
groupoid is the kernel of a groupoid-map. The situation differs from
that of groups in that there will usually be many quite different
groupoid-maps with the same kernel (for example all universal
groupoid-maps have trivial kernel). The particular map we construct
for a given kernel is the ‘‘best’ one: it is a factor of all maps with

the given kernel.
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Let N be any normal subgroupoid of the groupoid A. The com-
components of N define a partition on I = V(A4), and we write i for
the class containing 7, and I for the set of classes. N also defines
an equivalence relation on E(A) as follows: a = b (mod N) if and
only if a = xby for some x,y € N. (This is clearly an equivalence
relation for any subgroupoid N containing all identities of 4). Two
equivalent edges of A must have their sources in the same compon-
ent of N, and similarly for their targets, so each class a of edges
can be assigned a unique source and target in I. This assignment
defines a graph A/N, and the map 7 : a»—»g, i—iisa surjective
graph-map from A to A/N. We now define a partial multiplication on
the edges of A/N as follows: the product ab is defined if and only
if there exist a; Eg, b1 € b such that a b1 is defined in A4, and then
ab= ;17)1. To see that this multiplication is well-defined, suppose

that also a, €a, b, €b and ayb, is defined in A. Then a, = xa,y,

2
b2 = zb1 t with x,y,z,t €N, and a2b2 = xalyzblt in A. Since a; b1
is defined in A, yz lies in a vertex group of N, so u = b'lly zb, is
defined and lies in N. Hence a2b2:xa1b1 ut = alb1 (mod N). (This
argument, of course, depends on the normality of N). Now for

a: ii—»j#and b:k—1in A/N, the productgg is defined if and only
if axb is defined for some x in N, i.e. if and only if 7: k, and then
we have ab=axh:i—l Moreover, if (;z;);is defined, then
axbyc is defined for some x, y €N, and the associative law in A/N
follows immediately. Thus A/N is now a category whose identities
are the components of N, and 7 : A — A/N is a category-map. It
follows that A/N is a groupoid since A is a groupoid and 7 is sur-
jective. We call 7 : A— A/N a quotient map of groupoids. Note
that A/A is not in general the one-element groupoid; it is the trivial
groupoid with one vertex for each component of A. Note also that if
B is a subgroupoid of A containing N then B/N is a subgroupoid of

A/N.
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PROPOSITION 24. Letn: A— A/N be a quotient map and let

6 : A— B be any groupoid-map with kernel MD N. Then there is a
unique groupoid-map 0* : A/N — B such that 6 = 760*. The kernel of
0% is M/N. In particular, if Ker 6 = N then 0* has trivial kernel.

Proof. aym= a,m >a; =ay(mod N) =>a, = xay (xy€N)
%alﬁ = (x9)(a26)(y6)= 626.

Thus there is a unique map 0* : A/N — B with 6 = 70*, and it is
easy to see that 0* is a groupoid-map with the stated kernel. m

This universal property of A/N can be described in terms of
push-outs as follows. For any groupoid G let C(G) denote the set
of components of G, and TC(G) the trivial groupoid on C(G). Then
the canonical map G— TC(G) is universal amongst maps from G to
trivial groupoids (in fact (C, T) is an adjoint pair of functors).
Proposition 24 says that for a normal subgroupoid N of A the
diagram

N——A

TC(N)——— A/N

is a pushout square. We shall say that any groupoid-map 6 : A— B

is a quotient map if

Ker  ——— 8 A4

TC(Ker ) ——— B

is a pushout square. This is equivalent to the statement that the

induced map 6* : A/Ker g— B is an isomorphism.
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Any groupoid-map 6 : A— B induces a vertex map
V(0) : V(A)— V(B), say 0 : I — ], and a family of edge maps
01.]_ : Aij-ﬁBiU,jo, (i,j €I). 1t is convenient to classify groupoid-maps
by properties of these induced maps. We shall say that 0 is vertex-
surjective if o is a surjection, that 0 is piece-wise surjective if
each 91.]. is surjective, and that 6 is group-surjective if each group
homomorphism 0“. is a surjection. The terms vertex-injective,
vertex-bijective, etc. are similarly defined. Each of these classes
of groupoid-maps is closed under composition and contains all iso-
morphisms. There are some obvious relations between them:

(i) 0 is piece-wise injective if and only if it is group-injective,

and this is equivalent to saying that Ker 0 is unicursal;

(ii) If A is connected, then 6 : A— B is piece-wise surjective
if and only if it is group-surjective;

(iii) 0 is an injection if and only if it is vertex-injective and
piece-wise injective;

(iv) if 0 is vertex-surjective and piece-wise surjective then it
is a surjection.
Note that the converse of (iv) is false: the non-trivial map from Al

to a cylic group of order 2 is a counter-example. In fact we have:

PROPOSITION 25. The following are equivalent for a groupoid-
map 0 : A— B with kernel N:
(i) 0 is a quotient map;
(i1) 0 is vertex surjective and piece-wise surjective;
(iii) 0 is surjective, and any two vertices of A having the same

image in B lie in the same component of N.

Proof. (i) => (ii) is clear from the construction of A/N.
(ii) = (iii). 0 is certainly surjective. If i,j are vertices of

A such that 10 = j6 = k, say, then e, €B,g j6 has a counter-image
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y in Al.]., and y elVij since its image is an identity.

(iii) = (i). By Proposition 24, 6 induces a unique groupoid-
map 0* : A/N— B, and 0* has trivial kernel, i.e. is piece-wise
injective. By (iii) the vertex map of 6* is injective, since the
vertices of A/N correspond to components of N. Thus 6* is an
injection. But 6 is surjective, therefore 6* is surjective, hence an

isomorphism. ®

COROLLARY. [f60:A—B and ¢ : B—C are quotient maps then
so is 6¢ : A— C (by criterion (ii)). m

This corollary can be stated in the more familiar form: if M,N are
normal subgroupoids of 4 with M DN, then (A4/N)/(M/N) = A/M. The
other isomorphism theorems of group theory fail in general, but a
special case is worth noting. Suppose that the normal subgroupoid
N of A is totally disconnected (that is, its components are groups).
Then the construction of A/N is simplified: a = b (mod N) if and
only if a a = bx for some x in N, and the quotient map 7 : A— A/N

is vertex-bijective.

PROPOSITION 26. Let 8 : A— B be a groupoid-map with kernel N.
If 0 is vertex-injective, then N is totally disconnected and
0* : A/N — B is an injection. Hence A0 is a subgroupoid of B iso-

morphic with A/N. In particular this is true for all morphisms in Ql.

Proof. N is obviously totally disconnected. 6% is vertex-injective
and has trivial kernel N/N, so is an injection.m (See Exercise 2

below for further results in this direction).

COROLLARY. Every groupoid-map 0 can be written 0 = 0,0,0,
where 01 is universal, 02 1s a quotient-map and 04 is an injection.

6, may be chosen so that 0, and 05 are vertex-bijective.
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Proof.  Take 6, the universal map induced by V(6) and apply
Proposition 26. m

Since quotient groupoids can be defined as pushouts, i.e. as
right limits of suitable diagrams we can again formulate special
cases of Proposition 18 which say that, in an appropriate sense,
quotients commute with universals and with free products. For
these we need the obvious notion of the normal subgroupoid of A
generated by a subgraph X of A4; it is the intersection of all normal
subgroupoids containing X. (See Exercise 4 below for a description

of its elements).

PROPOSITION 27. (i) Let A = {4} be a diagram in G with right
limit L and canonical maps oM. AN L. For each A, let N be a
normal subgroupoid of Al such that every morphism AN Am in A
maps N into N* Then the groupoids AA/N)‘ are the objects of a
diagram A/N with morphisms induced by those of A. If M is the
normal subgroupoid of L generated by all the IVAGA, then L/M is the

right limit of A/N with respect to the induced maps oA AMNA L L/M.

(ii) Let 0: A— B be a universal groupoid-map, and let
a:A—A bea quotient map with kernel N. Let M be the normal
subgroupoid of B generated by NO, and let 3 : B—Bbea quotient
map with kernel M. Then the induced map 0: A—B is universal.

(iii) Let B be the free product of groupoids ar with respect to
maps or . AN, B, and let o AN AN pe quotient maps with
kemels N*. Let M be the normal subgroupoid of B generated by all
the N)‘@)‘, and let 3 : B—Bbea quotient map with kernel M. Then
B is the free product of the ZA with respect to the induced maps
6 : AN B.
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Proof.  We leave this as an exercise. Either apply Proposition 18
to suitable diagrams or proceed directly from the particular universal

properties involved. m

COROLLARY. Let A be the free product of subgroupoids A)\, let
N be a normal subgroupoid of AN for each A, and let N be the
normal subgroupoid of A generated by all the N)\. If C=A/N and
7 : A—C is the quotient map, then C = *C)§ where CAis the sub-
groupoid generated by A}‘n, and the induced maps ANNA A are
universal. Moreover, NNAM = N for all A.

Proof. By part (iii) of the proposition, with 6M the inclusion map
A)‘—»A, C is the free product of the groupoids AA/IVA with respect
to the induced maps AN e By Proposition 21(ii), this implies
that C = *C™ and that A*/N*— CMis universal. The kernel of
A)‘/N)‘—>CA is (NN A)‘)/NA, and since universal morphisms have
trivial kernel (Theorem 4, Cor. 1, p.76) it follows that N N A)\ =N
forall A. m

A

We now apply these ideas to obtain a detailed analysis of
retractions. We recall that a retraction is a groupoid-map p: A— B,
where B is a subgroupoid of A with inclusion map p: B— A4, such

that up = 15 and pp = 1, (see p.47).

PROPOSITION 28. Let B be a subgroupoid of the groupoid A with
inclusion map i : B—A. Let p: A— B be a groupoid-map with
kernel N. Then the following are equivalent:

(i) p is a retraction;

(i1) p is piecewise bijective and pp = Ig;

(1i1) p is a quotient map, N is unicursal, and pp = Ip.
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Proof. (i) = (ii). Let 0 : I »K be the vertex map of p. Since
pr = 1,, there exist elements I i—io of A (for all i €I) such that,

1

for any x eAij, Xp =r; Xt It follows that p maps Aij bijectively

to Aia,jm the inverse map being given by y — ry r].'1 for y €Ai<7,j0‘
Hence B is a full subgroupoid and p is piecewise bijective.

(i) => (iii). Since pp = 1B’ p is surjective. Since p is also
piecewise surjective, it is a quotient map (Proposition 25). Since
p is piecewise injective, N is unicursal.

(iii) = (i). Let x €Aij, and consider xpeB._ ._. Since

i0,
pp = 1g, x and xp have the same image under p. Butjp is a quotient
map, so this implies xp = x (mod N). Hence xp = r;l Xt for some
r, : 1—1i0 and T j—join N. Since N is unicursal, r; is uniquely
determined (independently of x) for each i €/, and the case x = €;
shows that r; exists for each i. The family {ri}i i now gives the
required homotopy pp~1,. g
THEOREM 6. (i) Let p: A— B be a retraction with kernel N. Then
N is unicursal, B is a full subgroupoid containing exactly one
vertex of each component of N, and A = B x N (free product of sub-
groupoids). Moreover, if B'is any subgroupoid of A such that
A = B'«N then the map B'— B induced by p is universal.

(ii) Let N be any unicursal subgroupoid of A containing all
vertices of A. (N is then normal). Let B be any full subgroupoid of
A containing exactly one vertex of each component of N. Then

A = B %N and there is a unique retraction A— B with kernel N.

Proof.  We prove (ii) first. Suppose that N and B are as stated
there. For each vertex 7 of A4, let i’ denote the unique vertex of B

lying in the same component of N as i does, and let r; be the unique

element of N“l. For x€Aij we have x' = r;lxrA €Ai'j/ = Bi'j" and the

j
map p : x> x is clearly a retraction from 4 to B since if x€B,
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then L= € I =€ and x'= x. To show that A = BxN we use cri-
terion (ii) of Theorem 5 (p.81). Suppose that ¢ : B—~Cand ¢ : N—C
are groupoid maps which agree on the vertices of B. We look for a
groupoid-map 0 : A— C whose restrictions to B and N are ¢ and ¢
respectively. For x €Ai],, we have x = r,(xp r].‘l, and since xpeB
we have no choice but to define x6 :(rl. ) (xpd) (rj YL It is easy
to check that this gives a groupoid-map 6 : A — C with the required
properties, and it is clearly unique. Thus A = B N. The unique-
ness of p follows from this since any two retractions A —B with
kernel NV induce the same map B — B (namely 15) and the same map
N — B (each component of N maps to the identity element of B lying
in it).

To prove (i), let p : A— B be any retraction with kernel N. We
already know that B is then a full subgroupoid of 4, and N is
unicursal (see the proof of Proposition 28). Also, since p is a
quotient map and induces the identity map on B, each congruence
class (mod N) contains exactly one edge of B, so each component
of N contains exactly one identity of B. It follows from (ii) that
A = B=xN. Suppose, finally, that we also have 4 = B'¢ N. The
trivial normal subgroupoid N’ of B’ and the normal subgroupoid N of
N together generate the normal subgroupoid N of A. Hence, by the
corollary to Proposition 27, the map p : A— B (which is a quotient
map with kernel N) induces a decomposition B = B, *B,, where
B, =gpd {B'p} and B, =gpd {Np}, and the induced map
B'= B'/N'—»B1 is universal. But B, contains only the identity
elements of B, so clearly the inclusion map B, — B is universal,
and it follows (Proposition 19°) that the composite map

B'—>B1 — B is universal. m
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COROLLARY 1. Every groupoid A has a free decomposition

A =B % N, where B is a totally disconnected subgroupoid consisting
of one (arbitrary) vertex group from each component of A, and N is

a unicursal subgroupoid generated by an arbitrary maximal circuit-
free subgraph of A. In particular, if A is connected then A = B % N,
where B is an arbitrary vertex group of A and N is a simplicial

groupoid generated by an arbitrary maximal tree in A.

Proof. ~ Choose a maximal circuit-free graph X in 4. By Theorem
1, such a graph exists and spans A. By Proposition 10, Corollary 2,
the subgroupoid N generated by X is unicursal, and it spans 4. If 4
is connected then X is a tree and N is simplicial. Now any sub-
groupoid B consisting of vertex groups, one from each component of
A, is a full subgroupoid and has one vertex in each component of N.
The result now follows from part (ii) of the theorem. (See also

Theorem 2, p.47). m

COROLLARY 2. If G = gpd(X; R) is connected and T is any
maximal tree in G, then the vertex group G;; of G at the vertex 1 has
a presentation Gii = gpd(X; RU T*), where T* is the set of all pairs

(t, ei) with t an edge of T written as a word in X.

Proof.  Let N be the normal subgroupoid generated by 7. By part
(ii) of the theorem, G = Gil. % N and G“. = G/N. The result follows

from the universal properties of quotients and presentations. B

Exercises

1. Let 6: A—B be a quotient map and C a subgroupoid of A. Show
that the induced map C—C0 is a quotient map if and only if each

component of N = Ker 6 contains at most one component of C NN.
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2. Show that in the Category Ql all the isomorphism theorems of
group theory are valid (including the Zassenhaus lemma and hence
the Schreier refinement theorem). All normal subgroupoids appearing

must be totally disconnected.

3. Show that any groupoid-map 6 can be written 6 = 6, 0,05, where

0, is vertex-injective, 02 is a retraction and 0, has trivial kernel.

4. Let X be a subgraph of the groupoid A. Let H be the sub-
groupoid generated by X and let H be the subgroupoid generated by
H and all conjugates a 'ha of elements h of H. Show that H is the
normal subgroupoid of A generated by X. (N.B. This is not as
obvious as it looks. The trouble is that only elements of vertex
groups have conjugates, and it is certainly not enough to take the

subgroupoid generated by X and its conjugates as in the group case).

5. Let a, B8 be groupoid-maps, and call 3 a push-out of a if there

exists a push-out square

a
—_—

|

in §. Show that push-outs of universal maps are universal and

o< @

B ————

B

push-outs of quotient maps are quotient maps.

6. Let A be a free product of subgroupoids A = B x C, let N be the
normal subgroupoid of A generated by C, and let 7 : A—Abea
quotient map with kernel N. Prove that (i) the induced map B—A
is universal, and (ii) there is a subgroupoid B’ of A such that

A = B' % C and the induced map B'-Ais an isomorphism.

7. Prove that the vertex groups of a free groupoid are free groups.



CHAPTER 13
Covering maps

The covering spaces of a topological space T can be classified
by their fundamental groupoids. The properties of the groupoids
which make this possible are as follows. Let T —T be a covering
map and y : m(T) — (T) the corresponding map of fundamental
groupoids. Let i be any vertex of #(T) (i.e. a point of T) and let H
be any vertex of 7 (T) with 1y = 1. Then for each edge x of #(T) with
source i, there is exactly one edge % of m(T) with source I such that
Xy = x. We take this property of the groupoid map y as the
definition of covering maps of groupoids, and extend it to include
coverings of graphs and categories. These coverings have interest-
ing algebraic properties.

Let A be a graph with vertex set I. The star of A at the vertex
1 is the set 'LEJI AI.]. of all edges of A with source i. We denote it by
A, or Sti(AJ). If 9: A—B is a graph-map then 0 induces star maps
01‘* : AI.*—>Bk* (where k = 10) for each 1 €1. We say that 0 is
star-injective (star-surjective, star-bijective) if each of the maps
91.* is injective (surjective, bijective). In this terminology a
covering map of graphs is a star-bijective graph-map. Similarly, a
covering map of categories or groupoids is a star-bijective category-

map or groupoid-map. There is a dual notion of co-covering i.e. a

morphism which maps all the co-stars A*]. = UI Aij bijectively.
i€

97
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For groupoids the two notions coincide since we have an involution

x +—x"! which interchanges stars and co-stars.

Notes: (i) We do not insist that coverings 0 : A— B should be
surjective, nor that A and B should be connected, as is sometimes
assumed for coverings of topological spaces.

(ii) Groupoid-maps which are star-surjective might reasonably
be called fibrations; they imitate closely the basic properties of
topological fibrations (see Exercises 2, 3, p.115). We shall not
discuss them here apart from noting that fibrations can be character-
ised as quotient maps followed by covering maps. This makes them

superfluous for our present purposes. (See also Brown [7]).

Examples. 1. Let T be a trivial category and A any category.

Then the projection map A x T —A is a covering (and a co-covering).

2. The inclusion map C —A, where C is a component of the
groupoid 4, is a covering.

3. The non-trivial groupoid-map from the simplicial groupoid
Al to the cyclic group of order 2 is a covering.

4. Let G be a group, and let G be the s‘implicial groupoid
with vertex set G and edges (g, h) (g, h €G), with multiplication
(g h) (h, k) = (g, k). Then the map y : G— G given by (g, h) — g™ '
is a covering map of groupoids. (Example 3 is a special case).

~
G is the universal cover of G.

PROPOSITION 29. Pull-backs of coverings are coverings; that is if

g
Y
a l
Y —
0

B

o
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is a pull-back square in D, C or G, and if B is a covering morphism,

then so is a.

Proof.  The construction of pull-backs is the same in all three
Categories. The vertices of 4 are pairs (i, 7) (i € V(4), 7 e V(B)) such
that 10 = j3. The edges of A with source (i, j) are pairs (a, B)

(a eAi* , 565}:*) such that af = 3. The vertex (i, j) of A lies over
the vertex i of 4, and for any a€4, , A6 eB].*, where j =10 = 3.
Since B is a covering, there is a unique b in the star of B at  such
that 53 = af, and (a, b) is then the unique element lying over a in

the star of 4 at (i, D.m

Given 3 and 0 as above, we call a the induced covering of A.

There is a close connection between covering maps A A and
representations of A. We define a representation of a graph A to be
a graph-map ¢ : A9, ie. an A-diagram in the Category of sets.
A representation of a category or groupoid A4 is a functor ¢ : A-S,
The representations of a fixed A are the objects of a Category N
whose morphisms are the natural transformations (or morphisms of
A-diagrams), and two representations are equivalent if they are
isomorphic in this Category. When A is a group this definition
coincides with the usual definition of equivalence for permutational
representations of A. Similarly we can form a Category Cov(A) from
the coverings of A. The objects of Cov(A) are all covering
morphisms 8 : B— A, and the morphisms from 3 to y are all com-

mutative diagrams
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where 6 is a morphism of the appropriate Category D, Cor G. Two
coverings 3,y as above are equivalent if there is an isomorphism
0 : B—C with 0y = 3, i.e. if 3, y are isomorphic objects of Cov(A).
We shall show that the Categories 84and Cov(A) are equivalent in
a very natural way.

Suppose that 8: B > A4 is a covering map and let [ = V(4). For
iel write Bi=if! = fveV(B)|vB =1} If a€Ai}, then (by definition
of covering maps) there is, for each ve B!, a unique edge a with
source v such that ;B = a. Denoting the target of gby w, we have
wf3 = j, so the assignation v — w defines a map 8% : B! — B/,
uniquely determined by a eAij. The covering 8 therefore determines
a graph-map 3* : A—d defined by i — B, a B4 Further, if B8 is
a covering of categories or groupoids, it is clear that B* is a
category-map. Note that we may have B! =& for some i, in which
case every a EAij is represented by the empty map & — B/.

If y: C—A is another covering of 4 with corresponding
representation y* : i —C, ary?, and if 6 : B—C is a morphism
such_that By = BB, then 6 induces maps ¢’ : B! - C!. Also if a €Aij
and a is the edge of B lying over it with source v, then af is the
unique edge of C lying over a with source vf, so B20/= 0’y 2 and
{o! }i ¢ is a natural transformation from 8* to y*. After a little more
checking we see that we have a functor Cov(A)_>5A defined by
BioB*, 010" ber

Conversely, suppose we have a representation 0 : A —9 given
by 1 +—>Si, a —02, where 02 : ' ., § if aEAI,].. We define a covering
o : S— A as follows. The vertex set of S is ;Li.l Si, which we take
to be the set of all pairs (i, v) with ve S'. The edges of S from (i, v)
to (j, w) are all pairs (g, v) where a €Aij and 0% maps v to w.

o, : S— A is defined by (i, v) =1, (&, v) — a, and the reader will

easily verify that this is a covering morphism. If 7 : A—0J is another
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representation and 0 : 0 —7 is a natural transformation given by
maps @ : 8 > T! we obtain a morphism 9* : S— T by mapping the
vertex (i, v) to (i, v0") and the edge (a, v) (aeAij) to the edge (a, v0').
This 0* defines a morphism o T, in Cov(A), and we now have a
functor O — Cov(4) given by o -3, {6 e 0*.

If we start with a representation o0 : A— 9, pass to the covering
o, and then to the induced representation (a*)* = ;, say, we find
that the sets S are replaced by the disjoint sets S'= {(i,v) | veS'}
and 0 is equivalent to 0. It is obvious that the functor o 0 from
& to M s naturally isomorphic to the identity functor. Similarly,
if we start with a covering 8 : B— A and form the new covering
(B*)«+ we find that the vertices of B are now provided with (super-
fluous) labels indicating their images in A4, and the edges of B are
replaced by an indication of their images in A and their sources in
B. 1t is again clear that the functor 3 — (%) % is naturally iso-
morphic to the identity functor on Cov(B). This proves the
equivalence of the two Categories, and the reader will have no

difficulty in proving the last part of the following:

PROPOSITION 30. Let A be a graph, a category or a groupoid.
Then the Categories 84 and Cov(A) are equivalent. Ifo: A— dis a
representation with corresponding cover o, S—A, andif 0: B—A
1s any morphism (in D, Cor G) then the induced covering of B (the
pull-back of 0*) corresponds to the representation 00 : B—d of B.
(Hence 8 and Cov(A), thought of as contravariant Functors of A,

are naturally equivalent). m

It is interesting to note that there is a prototype ‘‘Covering’’
which induces all coverings. Let S denote the Category of sets
with base-point. Its objects are pairs (S, s), where S is a set and

s€S. Its morphisms from (S, s) to (T, t) are pairs (0, s), where 0 is a
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map from S to T such that sf = t. The forgetful functor F : $.Sis
a covering of S; it corresponds to the identity representation of d.
If nowo: A-Jdis a representation of A then the covering of A
induced by F is (equivalent to) the covering o, defined above.
Coverings of groupoids have most of the formal properties of
coverings of topological spaces, and we now give some examples.
We can usually reduce to the case of connected coverings, i.e.
coverings in which both base groupoid and covering groupoid
are connected and non-empty. These correspond to representations

which are transitive in an obvious sense.

PROPOSITION 31. Leta: A—Abea covering map of groupoids.
Then
(i) Ker a is trivial, whence a is group-injective;
(ii) each component of A covers a component of A (but several
components of A may cover the same component of A);
(i1i) if a is a connected covering then it is surjective;
(iv) if a is connected and maps some vertex group of A

surjectively to a vertex group of A then a is an isomorphism.

Proof. (i) If x EA‘I.]. is in Ker a then xa is an identity of A and
must be equal to e,a. Since a is star-injective this implies x = e
Group-maps with trivial kernel are injections.

(ii) Any groupoid-map a : A — A sends each component Cof A
into a component C of A. Since each star of A4 or A is contained in
a component, the induced map C— C is still star-bijective.

(iii) If @ is connected then 4 is not empty, so at least one star
of A is in the image of a. Since A is connected, it follows that all
vertices of A are in Aa and hence all stars of 4 are in Aa.

(iv) Let the vertex group 121'00 be mapped surjectively (there-
fore isomorphically) to the vertex group 4,4 by a. Suppose that the
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vertices 1, j of A map to the same vertex k of A. Since A is con-
nected there are edges X : 0 —iand ¥ : 0—j in A. Their images
%,y in A both lie in Aok’ S0 z = xy'1 €Ay By hypothesis, there is
a ”Z'EA'OO such that Za = z. Consider the edge 3! Zy 1 i—jin A.

Its image under a is x! zy = e,. By (i) it must be an identity of z:i,

»
so we have 1 = j. Thus a is vertex-injective and therefore injective
(since it is star-injective). By (iii) a is also surjective, so it is an

isomorphism. m

Note. If the covering a : A—A is group-surjective (therefore group-
bijective) then A consists of a number (possibly 0) of disjoint
isomorphic copies of the various components of A. Such coverings
are called trivial; they correspond to trivial representations of A in
which all edges are represented by identity maps (one identity map
for each component of A). Of course they also cortespond to repre-
sentations equivalent to such trivial ones i.e. to representations

which map A into a unicursal subgroupoid of 3.

PROPOSITION 32. Ifa: A—Aisa covering map of groupoids then
the fibres aa”! as a runs through a component of A all have the same

cardinal.

Proof.  In the corresponding representation of A each aEAi]. is
represented by an invertible map Si—+Sj, so the Sl all have the same
cardinal for 7 in a fixed component. These are the fibres over the
vertices. The fibre over a €Aij has exactly one element for each

vertex over 1. B

If a is a connected covering and its fibres have finite cardinal

n, we call a an n-fold covering.
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PROPOSITION 33. LetAS%B3&C be morphisms in D, C or Q If
0 and ¢ are coverings, so is 6p. If ¢ and O are coverings, so is
0. If 0 and O¢ are coverings and 0 is surjective, then ¢ is a

covering.

Proof.  This is an immediate consequence of the definition of

coverings. B

Next we turn to ‘‘homotopy lifting properties’’ of covering
maps of groupoids. The analogue for groupoids of the closed unit
interval of homotopy theory is the simplicial groupoid Al (the
absolute free groupoid on one generator). ’

We shall denote the vertices of Al by 0, 1 and its edges by
€y €1 S s'l, where s : 0—1. If G is any groupoid there are two
canonical embeddings pg, #; : G—G x A defined on vertices by
i+—(1, t) and on edges by g — (g, e,) (t= 0,1). These two maps are
homotopic (naturally equivalent) under the natural transformation
01 po—Hy given by the edges s, = (e, s) of G x Al for i€l = V(G);
for if g eGij then si'1 (g ;Lo)sj = (el., s'l)(g, eo) (e]., s) = gpty. Conse-
quently any groupoid-map 6 : G x Al _ A defines a homotopy
a: 6,—0; where 0,=p,0(t=0,1), and a is given by the edges
sie of A. Conversely, if 90, 0, : G— A are groupoid-maps, and
a: 0,—0, is a homotopy given by edges a; : 10y —i0; of A, then
there is a unique groupoid-map 6 : G x Al - A such that 0, = ytﬁ
(t=0,1) and s,0 = a;, (i €l). This can be checked directly, but the
following argument is instructive. To simplify notation we shall
denote a trivial groupoid by the same symbol as its vertex set, and
in the case of a trivial group, by the same symbol as its vertex.
G x Al then has subgroupoids G x 0, G x 1 which are the images of

G under p, ¢4, and a subgroupoid [ x A! which is unicursal. Now
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G x 0 is a full subgroupoid and meets each component of I x Al in
one vertex. By Theorem 6 (p.92) we therefore have

Gx Al = (Gx0)« (I xAY). Now 0y : G— A induces a map

0f:G x0— A4, and since I x A' is the absolute free groupoid
generated by the edges s, = (1, s), any choice of edges a, in A gives
a groupoid-map a*: I x Al . A with s;a*=a.. In our case a, has
source 16, so 0§ and a* agree on the vertices of G x 0 and there-
fore induce a groupoid-map 8 : G x A! > A with the required
properties. (The fact that p, 0= 01 follows from the equations
g9, = a;l &9y a; for g EGij which assert that a : 6, —0, is a
homotopy). We are now justified in speaking of homotopies
GxAl A,

Note. For category-maps ¢, 0, : C— A, natural transformations
0, — 0, are given by category-maps 0 : C x {1}— A where {1} is the
absolute free category on one generator. Natural equivalences are
given by maps 0 : C x Al — A, and a modified version of the above

argument can still be used in this case.

We want to investigate the question when a groupoid-map
6 : G— A can be lifted to a coveringof A. Ifa: A—Aisa
covering map, we say that 0 can be Iifted to A if there is a

groupoid-map 6. G- A with a - 0, and we then call 6 a lifting of 0.

PROPOSITION 34. (Unique homotopy lifting). Leta: A— A be a
covering map of groupoids, let 0 : G x Al A be a homotopy and let
[T G—G x Al be the canonical map with image G x 0. If the map
00 = #06 : G— A has a lifting 00 : G— A, then 0 has a unique lifting

6:Gx Al -4 which makes the following diagram commutative
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00 -
G > A
o 5 l ;
1 6
GxA —A

Proof. First note that when G is the trivial group, this assertion
is precisely the definition of a covering map, since mapping Al into
a groupoid is the same as choosing an edge. Similarly, if G is a
trivial groupoid, G x Al is the disjoint union of copies of Al and
the assertion follows immediately. In the general case, let I = V(G)
and apply these remarks to I x Al. We then obtain a unique

groupoid-map J) : I x A' = A which makes the diagram

0

¢ i
— A

Fo 97> la
¢ > A

IxAl

commutative, where 550, ¢ are restrictions of éo, 6. But, as shown
above, G x Al is the free product of G x 0 and I x Al. If we think
of 9~0 as a map from G x 0 to A it agrees with g?: on the vertex set
I x 0 of G x 0; hence there is a unique groupoid-map 6.6xA —A
which restricts to 50 and @ on G x 0 and I x Al 1tis easy to see
that @ has the required properties; its uniqueness follows from that

of . m

To answer the general lifting problem for coverings we need a

stronger result than this. Its proof runs along the same lines.
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PROPOSITION 35. Leta: A— A be a covering of groupoids and
let 0 : G— A be a groupoid-map. Let H be a retract of G (i.e. a full
subgroupoid meeting each component of G), and let 0, be the
restriction of 0 to H. If 60 lifts to éo : H—A then 6 has a unique
lifting € : G— A which extends 0.

Proof. By Theorem 6 (p.92), G = H * N, where N is a unicursal
subgroupoid of G, and H contains exactly one vertex of each com-
ponent of N. Consider first the case when H is a trivial group.

Then G = N is simplicial and H lies at some vertex 0 of G. Let i1
be the images of 0 in 4, A under the maps 0, 50' Now G is freely
generated by the subgraph X whose edges are all the elements of the
star G, except e, (see Theorem 1, Corollary 2, p.41). Each edge x of
X is mapped by 0 to an element of the star AI.>|< and this element lifts
uniquely to an element X of A;*. The graph-map X —A given by

x — % induces a unique groupoid-map 0 : G— A which is a lifting of
0 and an extension of éo. Next, suppose that H is a trivial groupoid.
Then G = N is unicursal and the result follows by treating the

(simplicial) components of G separately. In the general case, let

‘T=H N N. Then T is a trivial groupoid with one vertex in each

component of N, i.e. a retract of N. We can therefore apply the
special case above to obtain a unique groupoid-map & : N — A which
lifts the restriction & : N — A of 0 and agrees with éo on T. The
maps é N—A4 and éo : H— A now induce a groupoid map

6:G=H s« N— A with the required properties. ®

COROLLARY. Leta: A-A bea covering of groupoids and let
0 : G— A be a groupoid-map with G connected. Let 0 be a fixed
vertex of G and i a fixed vertex of A. Then 0 lifts to a groupoid-map
6 : G— A sending 0 to i if and only if GOOGC;{“ a, and in this case

0 is unique.
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Proof. ‘“‘Only if’’ is obvious. If GOOQC/I“ a then, since a is
group-injective (Proposition 31), there is a unique group-map
50: GOO——HK sending 0 to i such that éoa is the restriction of 0 to
G, But G is a full subgroupoid of the connected groupoid G, so
0, extends uniquely to a lifting of 6. m

It is worth noting an alternative proof of Proposition 35 (and
hence of Proposition 34 which is a special case). First we may
assume that G is connected; H is then also connected since it is a
full subgroupoid. Let y : G— G be the covering of G induced by
a:A—Aand 0: G A. Since y is a pull-back of a, there is a

unique morphism ¢ : H— G which makes the diagram

H

¥
G A
61
B Y a
6
G A

commutative, where p : H— G is the inclusion map. ¢ maps H into

some component 60 of é, and Yy = p is group-surjective. Therefore,
since H is not empty, at least one vertex group of 50 maps sur-
jectively to a vertex group of G. By Proposition 31(iv), Yo is an
isomorphism, and we obtain the required lifting of 6 by mapping G

first to 50 by yo'l and then to 4 by 51 (the pull-back of 6 by a). m

We are now in a position to classify all connected coverings of
a given connected groupoid. If H is a subgroup of the groupoid G,

say H CG,,, then a conjugate of H is a subgroup of the form x 1Hx
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where x EGij for some j. A conjugacy class of subgroups of G is
the set of all subgroups conjugate to some given subgroup. For
example, the vertex groups of a connected groupoid form a conjugacy
class. If a: A—A is a connected covering of groupoids then the
vertex groups of A are mapped injectively into vertex groups of A.
Since they are conjugate in A their images are conjugate in A.
Further, if the vertex group H of A has image H in A and x'Hx is
any conjugate of H, then x has source in H and lifts uniquely to an
edge X of A with source in H. Thus x 'Hx is the image of a vertex
group x1Hz of A, and the image groups form a complete conjugacy
class of subgroups of A. We denote this class by C(a), and we write

C(al) < C(az) if each member of C(al) is contained in a member of
C(az).

PROPOSITION 36. Let a;: A1->A and a, : A2—>A be connected
coverings. Then there is a (covering) morphism 6 : A; — A, such
that a; = 0a2 if and only if C(a) < C(a,). Henceay, a, are
equivalent coverings if and only if C(a,) = C(az).

Proof. If 6: A —A, satisfies a; = fa, then 0 is a covering, by
Proposition 33. If H, is a vertex group of A, then H,0 is contained
in a vertex group H, of A, and H,a; C H,a,. Hence C(a;)< Cay).
If 0 is an isomorphism then clearly C(al) = C(a2). Conversely,
suppose that C(a;) < C(a,). Then any vertex group H, of A
satisfies H; a; CH, a, for some vertex group H, of A, and by
Proposition 35, Corollary, the map a; : A; — A lifts uniquely to a
groupoid-map 6 : A;—A, sending H, into H,. If C(al) = C(az) then
H,a, = H,a, for some H, and there are unique morphisms

0: A, —A, ¢:A,—A, such that ba, =a,, ¢a; = a,, 0 maps H; to
H, and ¢ maps H, to H;. Clearly 0 and ¢ are inverse

isomorphisms. m
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THEOREM 7. Let A be a connected groupoid. Then the mapping
a+— C(a) sets up a one-one correspondence between equivalence
classes of connected coverings a : A— A and conjugacy classes of

subgroups of A.

Proof. In view of the last proposition we need only construct, for
each conjugacy class C of subgroups of A, a covering a with

C(a) = C. This basic construction can be described most easily in
terms of the corresponding representation of A. Let H be a fixed
member of the given conjugacy class C lying at the vertex 0 of A.
For any edge a in the star of 0 we define the (right) coset Ha of H
to be the set of all edges ha (h €H). Distinct cosets are disjoint,
and Ha = Hh<=>ab™' €H. If acA ), then HaC 4,

for the set of distinct cosets contained in AOi‘ For any x €Ai]. and

and we write Si

any Ha C AOi we have H(ax) C Aoj, so x defines a map Si—>Sj by
Ha—Hax. Clearly this gives us a representation of 4 on the
disjoint sets Si(i € V(A)), and we denote by a : A— A the corres-
ponding covering of A. The fibre of a over the vertex i is the set
S;; the fibre over the edge x € Aij consists of one edge from Ha €S,
to Hb € SJ. whenever Hax = Hb. A is connected since for any two
Ha, Hb we have Ha (a'lb) = Hb. Now A has one vertex corresponding
to the coset H itself. The vertex group at this vertex contains one
element lying over each x in A such that Hx = H i.e. x € H. Thus
the image of this vertex group in A4 is precisely H, and it follows
that C(a) =C. m

We can also describe this covering groupoid Aof Aas a
concrete groupoid. If H € C as above and if Hax = Hb, then x
induces a mapping Ha— Hb by the rule ha — hax. These
translations form a groupoid Tr(A : H) under composition of

mappings, the objects of this groupoid being the cosets of H
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themselves. If x and y induce the same map Ha— Hb then ax = ay,
so x =y. It follows that the obvious map from Ato T(A : H) is an
isomorphism. Or, one can see directly that there is a groupoid-map
y : Tr(A : H)— A which sends. each translation to the unique element
of A inducing it. Since each x EAI.* induces a unique translation
from Ha to some other coset, for each Ha C A*i, it is clear that y is
a covering morphism. That y is connected, with C(y) = C, follows

as before. B

If we take C to be the class of trivial subgroups of A then the
covering groupoid A has trivial vertex groups, so it is simplicial.

It has one vertex for each edge of a star in A. By Proposition 36
this groupoid covers all connected covering groupoids of 4 and is
called the universal covering groupoid of A. Example 4 at the
beginning of this chapter describes the universal covering groupoid
of a group.

It should be noted that the construction of universal covering
groupoids is not functorial since if 6 : A— B is a groupoid-map there
will usually be many maps 6 : A— B between their universal cover-
ing groupoids which lie over 8. The induced maps of Proposition 36
are unique only when one specifies the image of one vertex. To
rectify this situation one can work in the Category of connected
groupoids with base-point (as in [6]). This seems a pity since one
of the advantages of using groupoids in topology is that they often
make base-points unnecessary. However, the only alternative seems
to be a more complicated construction on the following lines. The
universal covering of A corresponds to the regular representation of
A by means of the sets S, = A, for some fixed vertex 0. It is the
choice of 0 that makes the construction not canonical. If instead

we take the canonical regular representation of 4 in which 4 acts
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on its costars S = A*i by right multiplication then we obtain a
covering groupoid 4 which is no longer connected but has a com-
ponent isomorphic to the universal cover for each vertex of A.
There is now a canonical map V(A)—u@,' and 4 is universal (and
functorial) in the Category of coverings with such a lifting of
vertices. It is doubtful whether this procedure has any advantage
over the use of groupoids with base-point.

Our last theorem on coverings is the crucial result for

applications to group theory. It enables us to lift, for example, a

free decomposition 4 = * AN of a groupoid to any covering groupoid.

Although the statement looks categorical, its proof is not of the
‘“‘general nonsense’’ type. This is one of the few occasions when
we need the full force of the solution of the word problem for U,
and it would be interesting to know if there is any way of by-

passing this use of it.

THEOREM 8. Suppose thata: A—Ais a covering map of

A
l a
A

is a pull-back square in C. If 6 is a universal morphism, then so is

categories and that

~

.

0
0

o)
N

—

0. The sameis true for groupoids.

Proof.  We need only treat the case of categories since the terms
covering, universal morphism and pull-back have the same meanings
for groupoids as they do when the groupoids are considered as

categories.
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LEMMA. Leta: A—A be a covering of categories, and suppose
that 3a = a = aja,...a, (n >1)in A. Then there exist unique

elements a,, &,, ..., a_ of A such that da-= ar(r =1,2,...,n) and

2’
a= 3182... an.

For n = 1 this is trivial. For n = 2 we observe that there is a
unique &, covering a; whose source is the source of & and a unique
&, covering a, whose source is the target of &,. Then & and &, &,
have the same source and the same image under a, so they are
equal. The lemma follows by induction.

To prove the theorem we show that the elements of A are
uniquely representable as g-reduced words in elements of B via the
map é, where & = V(0). We represent B in standard form as a sub-
category of B x A. lIts edges are pairs (b, &), where b € B, & €A
and b0 =&a. The product (by, él)(bz, éz) is defined in B if and only

if both products b, b, and & are defined in B, 4 respectively.

a
172
Let & be any non-identity element of A and let a = da. Then a
is not an identity of A (Proposition 31 (i)). Now 6 : B—A4 is a
universal morphism, so by Theorem 4 (p.73), we can write
a=aja,...a (n > 1) where a_= b_0, the b_are not identities of B,
n r r r
and the products b_- b _,, are not defined in B. By the lemma we
can write a =&, é2 ...a, where 3 a=a_=b_§ and then the pairs
n r r r
Br = (br, 5r) are in B. They are not identities of B (since the b, are
are not identities of B) and the products b_- Br+1 are not defined in
B (since b -b_, is not defined in B). Since Zré =&, acan be
written as a o-reduced product a = (51 é)(f)z é)...(i)n ). It remains to
show that this factorisation is unique and that the identities of A
have no such factorisation.

Suppose that we have another such factorisation

&=(by0)b,0)...(6. B) (m>1)where b '= (b, ) is a non-identity
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of B and Z)r/- Brlﬂ is not defined. Since 8 : B— B is a covering
(Proposition 29) br' = 271_'['3 is not an identity of B. Since the products

~ !

a -é'+1 are defined in A, the products b - b'+1 are not defined in B.
r r r r

Now é:é{éé...é' ,sod=aa= al'a'...a' , where a'=a'a=56.
m 2 m r r r

By Theorem 4 we must therefore have m=n and br( = br(rz 1,2...,n),

since 6 is a universal morphism. It follows that ar' = a_and there-

fore,by the lemma, that 5;=5r. This shows that Brl = Et. Finally

suppose that (b, %)) (52 0)... (Bn 0) is an identity of A, where

inr =(b,a) €B. Then brt9 =aa=a, say, and a;a,...a_isan

identity of A. If the first product is o-reduced then, as above, the

product (b, 0) (b‘2 0 ... (bn 0) is o-reduced, and this is impossible by

Theorem 4 since it represents an identity of A. B

COROLLARY 1. Ifa:A>Aisa covering morphism of categories
and A = *% A)‘, where the A)\are subcategories of A, then A== A~A,

where At Aral, The same is true for groupoids.

Proof. Let B =11 A Then the map 0 : B— A induced by the
inclusion maps AM 4 is a universal morphism. The induced cover
B of B is clearly.l_l.z‘i’\, where A = A7g-1 is the induced cover of
AA, so by the theorem the map.u. AL is universal. Since every
vertex of 4 is in some A% it follows that 4 =  AA [ ]

COROLLARY 2. Leta: A—A be a covering morphism of
categories. If A is the free category on a subgraph X, then A is the
free category on X = Xal. If A is the free groupoid on X then Ais
the free groupoid on X.

Proof. Let Y be the absolute free graph on E(X), i.e. ¥ is the
disjoint union of graphs e—>—e , one for each edge of X. Let B
be the free category (groupoid) on Y and let 6 : B— A be the

morphism induced by the canonical graph-map ¥ —X. Then 0 is a
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universal morphism in both cases. If Y, B are the induced covers of
Y and B, then Y C B and 6: B4 is a universal morphism. Since
Y6 = X and X contains all vertices of 4 it is enough to show that B
is the free category (groupoid) on Y. In other words we need only
verify the corollary when X is an absolute free graph, and this

0 X 1

For groupoids the result is then obvious since 4 is a simplicial

reduces immediately to the case when X is the graph

groupoid of type A!, and any covering of A! consists of disjoint
copies of Al mapped isomorphically to A. For categories there are
more possibilities since the covering need not be a co-covering.

But it is clear that every edge of A not an identity must cover x, so
X certainly generates A. Since X has no paths of length greater than

1, it generates A freely as a category. &

Exercises

1. Prove Corollary 2 above for groupoids by a direct argument
using the normal form xfl xzez... x:” for the edges of a free groupoid.
2. (Definition of fibrations). Prove that the following are equiva-
lent for a groupoid-map 6 : A —B :
(i) 0 is star-surjective,

(ii) 0 is a quotient map A — A/N followed by a covering

A/N - B;

(iii) If

Hx0— 2% . A
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is a commutative square in § (with @ the inclusion map) then
there is at least one groupoid-map y : Hx Al A such that

py = a and y0 = B.
(iv) If

G ——B—>B
is a commutative square in G, where H is a retract of G and W
the inclusion map, then there is at least one groupoid-map

vy : G—A such that py = @ and y0 = .

3. Show that any groupoid map ¢ has a factorisation ¢ = b Dy,
where ¢, is an equivalence of groupoids and ®, is a fibration (as

defined in Exercise 2).

4. Let A be a connected groupoid and construct a graph C as
follows. The vertices of C are all subgroups of A. If H,K are sub-
groups of A4, the edges of C from H to K are all triples (H, X, K)
where X is a left coset of K which contains a right coset of H. Show
that the multiplication (H, X, K)(K, ¥, L) = (H, XY, L) makes C a
category, and show that this category is equivalent to the Category
of connected coverings of A. (XY denotes the set of all products xy

which are defined in 4, with x€X, ye¥).

CHAPTER 14
Applications to group theory

In this section we use the machinery of groupoids to prove the
theorems on groups which are usually known by the names of
Nielsen-Schreier, Kurosh and Grushko. For the first two of these
we only have to piece together results which we have already
proved. We refer the reader to [18], p.28, for the fact that the rank
of a free group (i.e. the cardinal of a set of free generators) is an

invariant of the group.

THEOREM 9. (Nielsen-Schreier). Any subgroup H of a free group
G is free. If G has finite rank r and H has finite index n in G then

H has rankrn-n+1.

Proof. By Theorem 7 (p.110) there is a connected covering y: GG
and a vertex group H, of G such that y maps H, isomorphically to H.
For example we may take G = Tt(G: H). If X is a set of free
generators for G, considered as a graph with one vertex, then

X- Xy! generates G freely (Theorem 8, Corollary 2). Since G is
connected, X is also connected, and it spans G. Hence, by Theorem
1, there is a tree T C X which spans G. LetY = X\T be the graph
obtained from X by deleting the edges of T. Then G = A % N, where
A and N are the subgroupoids generated by Y and T, respectively,
and Y, T generate 4, N freely (cf. p.83, Exercise 3). Now N is a

simplicial (normal) subgroupoid spanning G, so by Theorem 6, we

117
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also have a free decomposition G = Hg * N,and there is a unique
retraction p : é—>H0 with kernel N. Moreover, this retraction
induces a universal morphism A—»HO, and since A is free on Y, HO
is freely generated by the image of ¥ (Proposition 20). This shows
that H is free. (Alternatively, one can use Corollary 2 to Theorem
6). If H has index n in G then G has n vertices and y is an n-fold
covering. Hence if X has r edges, X has m edges. But T has n-1
edges (Proposition 11, Corollary), so Y has rn-(n-1) edges, and this

number is therefore the rank of H. B

Note. This proof shows that the standard algebraic and topological
proofs of the theorem are essentially the same. On the one hand it
is just an algebraic model of the proof by covering spaces and
fundamental groups. On the other hand, the choice of the tree T C X
is equivalent to the choice of a Schreier transversal of H in G, and
one can recover the standard form for the free generators of H by

writing down the retraction p in terms of the edges of T.

THEOREM 10. (Kurosh). Let G be a group and suppose that

G = *A G’\, where the GA are subgroups. Then any subgroup H of
€

G has a free decomposition H = (/\:k#H)w’)*F with the following
properties:

(i) each HM (e, peM™)is of the form H Nxy, G*x3l,
where, as y varies in MA, Xy, runs through a (suitably chosen) set
of representatives of the double cosets H x G)\;

(i) F is a free group; if | = |A| is finite, and H has finite
index n in G, then F has rank In -m-n+1, where m is the total

number of double cosets H x G A eN).

Proof. Lety:G—G and H, = H be as in the proof of Theorem 9.
Then G = *GA, where G = G)\y'l‘ For each A let é)‘“(,u EMA) be
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the components of GA. Then GM = & G)W and therefore G = * GA“

2 A, p
(Proposition 22). Now GM‘, being connected has a decomposition

GM KM 4 SM where KM is an arbitrary vertex group of G
and SM is a simplicial groupoid spanning GM Hence G =K « S,

where K = )\* KM is totally disconrected and S = )\*‘ SM s free
K ) M
(since each SA“ is simplicial, therefore free). Now S spans G

because sh spans &M and the GM span G. Hence, as in the proof
of Theorem 9, we can choose a maximal tree contained in a free
generating graph of S and obtain a decomposition S = 4 % N where A
is free and N is a simplicial groupoid spanning G. Again, there is a
unique retraction p : G—JIO with kernel N, and since G- (K « A)%N,
p induces a universal morphism from K % 4 = (% KML) * AtoH,.
Passing to H by y we now obtain, by Proposition 23(i), a decompos-

ition H = ()\* H)"L) % F. Here F is generated by Apy and is a free
M
group, by Proposition 20. Since KM is a group its image under py

is already a group, so we have HM K)Wpy.

It remains to show that this decomposition of H has the stated
properties. The covering G of G corresponds to the representation
of Gh (by right multiplication) on the right cosets of H. The com-
ponents of GA correspond to the orbits of this representation and are
therefore in one-one correspondence with the distinct double cosets
Hx GA. For simplicity we take H to be the vertex group of G at
the vertex corresponding to the coset H itself. Having chosen a
vertex group KM from the component GM of CA, there is a unique
edge ;‘7\# of N with source in H, and target in K)w, and the image
X\ of this edge under y lies in the corresponding double coset
Hx G Also, since p is the retraction to H, with kernel N we have
K)wp = F(AuKA“&/'\l, so HM - K’\'“'py = x/\M(K’\/‘y)x}\lﬂ. But KA”)/ is
the stabiliser in G” of the coset Hx) , i.e. K)w‘y - 6Mn x/'\I#Hx)m,
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and it follows that HM‘ =X\, Gxxlu N H. This proves (i).
In the finite case G has a finite number my of components and
n vertices (n the index of H). Each 5)\# is freely generated by a

maximal tree in Gl\“, so SN = & SM is freely generated by a maximal
"

circuit-free graph in 6)‘. By Proposition 11, such a graph
has n-my edges. Hence S = ;c\ SA is freely generated by a graph with

In-m edges, where I = |A|, and m = )% my is the total number of com-

ponents of all the M1t follows that A is freely generated by a
graph with I n-m-(n-1) edges (since we have removed a tree with n-1
edges) and F, being of the form U_(A), is a free group with this
rank. M

For the proof of Grushko’s theorem we need some auxiliary
results on quotients of free products. We say that the normal sub-
groupoid N of the groupoid A is adapted to the free decomposition
A= xar (where Arc A) if the quotient groupoid B = A/N is the
free product of the subgroupoids B* generated by the images of the
AN For example, this is the case, by Proposition 27, Corollary, if
N is generated as normal subgroupoid by its intersections with the
AA. For groups the converse of this statement is also true; for
groupoids, unfortunately, it is not true, and we must examine the
situation more closely.

All free products in the rest of this section are free products of

subgroupoids.

PROPOSITION 37. Let A = % A" and let M, N be normal subgroupoids
of A with M CN. Assume that M is adapted to the decomposition

A= *A)\, and let B = >I<B)t be the corresponding decomposition of

B = A/M. Then.N is adapted to % A" if and only if N/M is adapted

to *B’\.
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Proof. Letp:A—A/M and v: A—A/N be the quotient maps.
The induced map 7 : A/M — A/N is a quotient map with kernel M/N.
The subgroupoids of A/N generated by the Bz are the same as the
subgroupoids generated by the AAV, and the result follows

immediately. B

PROPOSITION 38. Let {Ni}i ¢ be a family of normal subgroupoids
of A, and let N be the normal subgroupoid generated by their union.

If each N; is adapted to the decomposition A = *AA, then so is N.

Proof.  This is another example of Proposition 18 (right limits
commute with right limits). Write B, = A/Ni, B = A/N, with quotient
maps 7, : A‘—»Bi, m: A—B. Then B is the right limit of the diagram
with objects 4, B, and morphisms 7 (i €I). Each of 4, B, is a free
product indexed by A € A, so can be expressed as the right limit of
an appropriate diagram (over the same graph D in each case). The
maps 7, respect the free decompositions, so give rise to maps of
D-diagrams, and the rest is tedious checking.

‘More directly, writing BI.A and B)\ for the groupoids generated by
the images of Al in B, and B, we have B, = B;\ for all 1 and we
wish to prove B = % BA. Since Ni CN, there is a unique morphism

qSi : Bi — B such that 7 ¢'i = m; and T ¢i’ 7 induce morphisms

such that 77? (i)f‘ = 7 for all 1, A. Suppose that ,8)‘ : BN C are

morphisms which agree on identities. Then the morphisms
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ot = 77)‘,8)\ W UNN, agree on identities and therefore induce a
morphisms a : A—C. Also, for each 1 € I, the morphisms

Bi\ = ¢>i\ BA : B?—ec agree on identities and induce a morphism

Bi : Bi—>C. Now, for each A, the restriction of m, Bi to Ar is

rr;\ Bf‘ — B’\ = a)\, son 3, =a. In particular Kera D Kerm, =N,
and this for all i € I. Hence Ker a D N and there is a unique
morphism 8 : B— C such that #8 = a. This 8 agrees with ,8/\ on
ar 77’\, and AA ot generates B)\, so the restriction of 8 to B)\ is ,3)\.
The uniqueness of 8 subject to this last condition is obvious since

any such 8 must satisfy 78 = a. This proves that B = #B, [ ]

PROPOSITION 39. Let A = % A and let N be a normal subgroupoid
of A adapted to this decomposition. If each N N ah is totally dis-

connected then so is N.

Proof. Every non-identity a of 4 is uniquely expressible as a
reduced word a = a, a, ... a, (n>1, a, €A )\i 4 )\i+1’ a; not an
identity ). We call n the length of a; identities have length zero.
Suppose that N is not totally disconnected, and let a be an element
of N joining distinct vertices and of minimal length subject to these
conditions. If a=a; ay...a, isits standard form and if b, = a,m,
where 7 : A—B = A/N is the quotient map, then b, b,... b_is an
identity of B. But B = % B)\, where BA is generated by A)\ﬂ, and

b, EB)\i ()\i qé)\H_l). By TReorem 5(p.81) it follows)\t.hat some b, is an
identity, i.e. a, €N N A’ for some i. But NN A is totally dis-
connected, so this a, lies in a vertex group of N. Hence the product
a = aja,...a,_ja,, ...a is defined in 4, and the element a" has
length at most n-1. However, a' has the same source and target as
a, and a’' € N since a'm = bib,...b_ib b_ is still an identity

i-1Pi+1

of B. This contradiction proves the proposition. ®
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THEOREM 11. Let A=« AM and let N be a normal subgroupoid
adapted to this decomposition. Then there is a unicursal normal
subgroupoid NO C N which spans N and 1s also adapted to the

decomposition.

Proof. Let JU be the set of all unicursal normal subgroupoids
contained in N which are adapted to the decomposition. JUis not
empty since it contains the trivial normal subgroupoid T of A. Note
that a unicursal subgroupoid is normal if and only if it contains T.
If {Ni}i ¢ is a chain in JU (ordered by inclusion) then iL€JI N. is
clearly unicursal, normal and contained in N. Since it is generated
by the N,., which are all adapted to the decomposition, Proposition
38 tells us that UNi is also adapted. Thus JU is inductively ordered
by inclusion and contains a maximal member NO, by Zorn’s lemma.
It remains to show that Ny spans N, i.e. that N= IV/NO is totally
disconnected. Let 4 = A/N,, with quotient map = : A—A. Then
A= % Z)\, where A% is generated by Al By Proposition 37, N is
adapted to this decomposition. Suppose that N is not totally dis-
connected. Then, by Proposition 39, some ZA N N is not totally dis-
connected, so there is an xeA'n N joining distinct vertices. The
normal subgroupoid X generated by x consists of ;, x"! and all the
identities of A. It is clearly adapted to the decomposition A=xAr
(see Proposition 27, Corollary), and is contained in N. Now

X= X/IV0 , where X = X7l is a normal subgroupoid of A contained
in N. By Proposition 37, X is adapted to the decomposition

A =AM Also X is unicursal since X/N0 and N, are both
unicursal. Thus X € Jl. But X/NO is not trivial, so X contains N,

properly, and this contradiction proves the theorem. &

THEOREM 12. Let G, B be groups with free decompositions
G =% G)\, B = *BA()\ € N), andlet y : G— B be a group
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homomorphism such that GAI// =BMforall A €A, IfH is any
subgroup of G such that Hyr = B, then H has a decomposition
H =  H* such that H/\g[f = BN for all \.

Proof. Let A = Ti(G:H) and let @ : A— G be the standard covering
morphism. Then A is connected and has a vertex group Hy=4,,
which maps isomorphically to H under a. Consider the groupoid-map
0=a): A—B. If i,j are vertices of A then there exist edges

X € Aoi,y € AOj' Since HO 0 = Hy = B (a group) we can find, for
each b € B an element A € H such that h6 = (x0) b(y@)'l. Then
a=xlhye Aij and af = b, so 0 is piece-wise surjective. Since 0
is obviously vertex-surjective it follows that it is a quotient map,
by Proposition 25. Thus B = A/N, where N = Ker 0, and since B is
a group, N spans A. Also, by Theorem 8, Corollary 1, 4 = % A’\,
where A% = GMa . Since AN6 = G’\(/f = BA, N is adapted to this
decomposition of A. Hence, by Theorem 11, there is a unicursal
normal subgroupoid N, spanning N which is also adapted to the
decomposition. NO spans A (since N does), so by Theorem 6(p.92),
A=H, = N, and there is a unique retraction p : A——>H0 with kernel
N, Since p is a quotient map (Proposition 28) it follows that
Hy=x Hé, where Hé is generated by A)\p. Hence H = % H)\, where
HM = HOAa. Finally, since Ker p = N, CN there is a unique morphism
0* : H)— B such that p 6* = 6. Hence H/\l/l = Hé@ = ngﬁ* = Hg@*
(since p restricted to H, is the identity), and H’\l/f is therefore
generated by (AAp) 0% = AN = BA, But B is a group, so H)\l/l - B

as required. W

COROLLARY. (Grushko’s Theorem). Let B be a group with a free
decomposition B = # B)\, and let F be a free group. If ¢ : F—B is
a surjective group homomorphism, then F has a decomposition

F = % FN such that F*¢ = BM
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Proof. Let X be a set of free generators for F, and let the image
x¢ of each x € X be written in some fashion as x¢p=b_ b ;... b

x,r’
where r = r(x) > 1 and each bx’i lies in some BA. This is certainly
possible, and we take a fixed representation of this form for each x.
We also fix, for each pair x,1 a A = A(x,1) such that bx’i € B/\. (This
is necessary since some of the bx)l. may be identities and lie in
several B)\). Now let ¥ be a set whose members are distinct
symbols y_, for x € X and i = 1,2,...,(x). Then ¥ = LL ¥*, where
YA - {yx,i | AMx,1) = )\}. The free group G on the set Y has a free
decomposition G = * G)‘, where G is free on YA. The unique
homomorphism ¢ : G— B defined by Vx,i be,i maps G into BA.
Also, the unique homomorphism o : F — G defined by

Xy 1Y 2 Yy is an injection, since the Yy,; are all distinct
free generators of G. For each x € X we have xo¢ = bx'1 bx,Z"'
bx,r = x¢, so 0 = ¢. Hence the subgroup H = Fo of G satisfies

Hy = Fé = B. By the theorem H = % H®, where H") = BY, and it
follows that F = * FA, F)‘qS = BA, where FA = Bl m

Problem. Can one strengthen the conclusion of Theorem 12 so that
in the special case when B is trivial it reduces to the Kurosh
subgroup theorem? A suitable conjecture would be that under the
hypotheses of Theorem 12, H has a free decomposition H = % H'\
such that (i) H)\(Z) = B)\ and (ii) each HA has a decomposition

HM - (sz HA“)* F'\, where FA is free, HM _H N X\, G)\x)w'l, and for

fixed A the Xy, are a set of representatives of the double cosets
H xGM This conjecture is true when H has finite index in G, as one
can show by the following line of argument. The covering A of G in
the proof of Theorem 12 is mapped to H, by a retraction p whose
kernel N is adapted to the decomposition A = *AA. Suppose that A

has a finite number n > 2 of vertices (n is the index of H in G). By
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Proposition 39, N, contains an edge x of some A'\ joining distinct
vertices. We may retract 4 to a full subgroupoid A, with n-1
vertices using as kernel the normal subgroupoid X generated by x.
By Proposition 27, Corollary, A, = *A/}, where A)l‘ is generated by
the image of 4, Also, if x EAA, then the induced map A¥— Af is
universal if p # A and a retraction if p = A. Now N /X is adapted to
this decomposition, so we can do the same trick again. Thus we
obtain successive retractions 4 = Aj—A - ...—> An_1 = H, with

A, =% AM and induced maps A’.\—>A?‘+1 either universal or
1 A 1 1 1

retractions. The composite of these maps is p, so Ax):-l is the Hé\
of the theorem. Now let K)W be chosen as in the Kurosh theorem,
i.e. one vertex group from each component of each AN Then by
induction one can prove that any subgroupoid D? of Af‘ consisting of

one vertex group from each component has the form (* K?‘“) * Fl).\

where F? is free,and K)w is a suitable conjugate in A4 of K‘\“. This
is true when 1 = 0 since all vertex groups of a component of Akare
conjugate in AA. The hypothesis clearly carries over from Af\ to
Af‘ﬂ if the induced map A?——n‘l?ﬂ is a retraction since A?‘H is then
a full subgroupoid of A;\ meeting each component. Suppose on the
other hand that the map Af‘aAf‘ﬂ is universal and assume that D?
(a totally disconnected retract of Ai.\) has the stated form. Then

A? = D? * P where P is free. The map A?—»A?ﬂ, being induced by
a retraction Ai ——>A’.+1, sends any subgroup of A? to a conjugate
subgroup. Since the map is universal it preserves all free
decompositions; hence A?ﬂ = Bf\ * Q, where Bf‘ is a free product of
a set of conjugates of the K’\“ and a free group, while Q is a free
groupoid (of the form U_(P)). It follows that Q spans A?ﬂ and is of
the form Q = R % S where R is a totally disconnected free groupoid

and S is unicursal spanning A?ﬂ. Now take any subgroupoid D?ﬂ
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of A?ﬂ consisting of one vertex group from each component. Then
there is a unique retraction A?ﬂ —»Di‘ﬂ with kernel S. Since

Ai,\ﬂ = Ef‘ %*Q = (E? % R) % S, the induced map (—151).t * R)—>Df‘+1 is

universal (Theorem 6). Again it sends subgroups to conjugates of
themselves, and we deduce that D?‘ﬂ has the required form. This

completes the induction, and it follows that HO = % Hé, where

H) = 4N | — (+ HM) % F), where F2 is free and H)* is some

conjugate in A of KA“. The corresponding decomposition of H then
has all the stated properties.

A similar inductive proof for the general case would require a
limit argument, and this seems rather elusive.

Note added in proof. Some results related to this problem have

been proved recently by E. T. Ordman [26], [27].

Exercises
1. Prove that any subgroupoid of a free groupoid is free.

2. LetA==x A™ and B = % B be groupoids and let 0 : A—B be a
morphism such that A0 C BA. Prove that Ker 0 is adapted to the

decomposition A4 = * A/\.

3. Prove that if a totally disconnected normal subgroupoid N of 4
is adapted to a decomposition 4 = * A)‘, then N is generated as

normal subgroupoid by all the N N AA.

4. LetA = *A)‘, let 6 : A— B be a universal morphism of
groupoids, and let B = % B be the corresponding decomposition of
B. Prove that if M is a normal subgroupoid of 4, and N is the
normal subgroupoid of B generated by M8, then M is adapted to #AM
if and only if N is adapted to *B)‘.



CHAPTER 15
Coverings of right limits

Let A be a diagram in C consisting of categories A'\()\ € A) and
morphisms ¢ (0 € 2). Let A = lim A with canonical morphisms
AN AL If y : A—A is a covering morphism then we obtain,
via the maps a)\, induced coverings y)\ . AN, AN and maps
@AM LA For any ¢ : AN, A* such that o7 at = o, there is a
unique ¢ : AN A* such that &7 at = & and s y}‘qSU. We
therefore obtain a diagram A and a diagram-map from A to the trivial

diagram I'(4). We aim to prove

THEOREM 13. Ifvy: A-Aisa covering of categories and
A= li‘l‘ A in G, then A = lim Z«, where A is the diagram of induced

covers. The same is true in G.

Note. The forgetful functor F : §—C has a right adjoint, namely,
the functor which assigns to each category its groupoid of invertible
elements. Hence F preserves right limits, by Proposition 15. We
already know that F preserves left limits, in particular pull-backs,
and F also sends coverings to coverings. Hence we need only
prove Theorem 13 for categories.

There is another convenient formulation of this result. If Z is
any object of a Category K, we can form the Category KZ of
K-objects and morphisms over Z as follows. The objects of KZ are
K-morphisms B : B— Z, for arbitrary B in X, and if 8': B'>Z is

129
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another such then the Kz-morphisms from 3 to B’ are commutative

triangles

VA

inK. A D-diagram in KZ is essentially the same thing as a
D-diagram A in X together with a diagram-map from A to the trivial
diagram I'(Z). If X is right complete then lim A exists in X, and the
induced map lim A — Z is clearly the right limit of the corresponding
diagram in KZ' Thus KZ is also right complete.

Now let { : ¥ —Z be a fixed K-morphism.and suppose that X
admits pull-backs. Then for each object 8 : B— Z of KZ we have a

pull-back square

PB
Pg (B) Y

'

B

which gives us an object P, (B) of Ky. Any Kz-morphism lifts
uniquely to a KY-morphism, and we obtain a pull-back functor
Pg : KZ —>Ky. It is an easy exercise to show that Theorem 13 is

equivalent to the following:

THEOREM 13" If{:Z>Z isa covering morphism in C then the

pull-back functor PC : GZ _)GZ preserves right limits.
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Now a functor F : K— &, where K is right complete, preserves
right limits if and only if it preserves coproducts and difference
cokernels. This is clear from the proof of Proposition 16 (or rather
the dual of this proof) since all the constructions involved are
preserved by such a functor. Hence we need only prove that PC in
Theorem 13’ preserves coproducts and difference cokernels, and this
is again equivalent to proving Theorem 13 in these special cases.
For coproducts the result is trivial since any cover of a disjoint
union of categories AN s the disjoint union of the induced covers of

the A». Theorem 13 is therefore reduced to the following:

PROPOSITION 40. In the diagram of categories

let & be the difference cokernel of ¢ and iy, with ¢pd = Y6 = ¢, and
let a be a covering morphism. Let (5, B) be the pull-back of (a, 5)
and let (%, y) be the pull-back of (a,¢). Finally, let ¢, s be the
unique morphisms satisfying 36 =d=2¢ dB=yd and ¥ B = yi.
Then & is the difference cokernel of & and .

Proof.  First suppose that V(¢) = V(¢) : K—1. We recall from Ch. 9
the following facts which characterise 6 in this case: (i) V(4) =1
and 8 is an I-morphism (that is V(8) = ]7); (ii) 0 is surjective;

(iii) for x, y € B, x0 = yd if and only if x = y, where = is the
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equivalence relation on the edges of B generated by all pairs of the
form (b, (c¢)b,, by(cy)b,), where c € C and by, b, €B. If V() =1,
then V(B) can be identified with I, and with this identification

5 is an T—morphism. Clearly 5 is surjective, so it remains to prove
the analogue of (iii) for 5. We write x ~ y if x and y are of the form
bl(ch)b2 and bl(cl//)b2 respectively, and we also use the symbols

~ and = for the corresponding relations in B defined in terms of aﬁ
and ¢. Since 6 = 1715 by construction, % ~ 7 implies %0 = y5. Hence
% = implies %0 = yo. Conversely, suppose that %, 3 € B and

% = 3‘73 = & say. Then, taking B C B x Aand CCCxA4as usual,
we have X = (x, 3), y = (y, &), where x0 = y0 = &a = a, say. By (iii)
above, there exist edges x = X Xy, .-, X, =y in B such that for
i=1,2,... n, either X; ~ X, 1 OF X, ; ~ X,. Since xi5 = a = 3a for all
1, there are corresponding edges X = (xi, 3) in B, and we need only
show that X, ~ %._; or X 1~ X, Thus it suffices to assume that

x ~ y and deduce that X ~ 5. Suppose that x = b (cP)b, and

y = bl(C(ﬁ)bz, and let 5,5 = ay, b25 = a,, cpd = cyfd = ag Then
ajaga, = x0 = y0 = a. Since a is a covering, this factorisation of a
lifts (uniquely) to a factorisation & = a; &y 8,, with & a= a, for

i =0,1,2 (see the lemma on p.113). This gives us elements

o

1 = (by, él), b, = (b2, 52) in B and & = (¢, 50) in C such that

ot

1(6(23)32 = % and 31(6(7/)7) o =y. Hence ¥~ as required.
In the general case, let 0 = V(§) and write B, =U_(B), with

canonical map ¢ : B—B, Then we have a diagram
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with ¢ = oE, Uy = ¢ and €5, = 8. The pull-back functor P gives

a corresponding diagram

[« 723
P Y

O

which covers the first diagram in the sense that the coverings a,f,y
and the induced covering BO : §0—>BO form a morphism of diagrams.
Now 50 is vertex-bijective and is the difference cokernel of ¢ and

¥y By the special case already dealt with, it follows that §, is the

difference cokernel of ;‘vo and ‘ZO' It is easy to check also that

E 5
e}

is a pull-back square. Since £ is a universal morphism, it follows

Ee)
N — e

from Theorem 8(p.112) that gis a universal morphism. Finally, since
V(&) = V(8) is the difference cokernel (in O) of V(é) and V(¥), an
easy argument shows that V(g) = V(S) is the difference cokernel of
V(ES) and V(J/). These facts imply that S is the difference cokernel
of <;~S and er For if <Z)0 = lZG then V(0) factorises through V(g), so
0= 561 uniquely. 6, satisfies (350 0, = JOGI, so 0, = 50 0,
uniquely. Hence § = 86, and 0, is clearly unique with respect to
this property. This proves the proposition and hence Theorems 13
and 13'. m
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Example 1. Free products can be expressed as right limits, so
Theorem 13 includes Corollary 1 of Theorem 8. More generally, call
the category (or groupoid) A the generalised free product of sub-
categories (subgroupoids) ar if, for arbitrary morphisms o AMB
such that 6" and 6" agree on AM Z AN N A for all A, u, there is a
unique morphism 6 : A — B whose restriction to At is 0 for all A.
This is equivalent to saying that A is the right limit of the diagram
with objects all AA, AN and morphisms all the inclusions AML—»A ,
Ar KL A% We write A = % A in this situation. Ifa: A—A4is a
covering then the induced covers A'A of AA and ZA“ of A)‘“ are all
subcategories (subgroupoids) of 4 with A g A" and Theorem
13 implies that 4 = ?E;l’\. (Generalised free products are also called
free products with amalgamations, but there is some ambiguity since
the latter term is also used to describe arbitrary right limits A of
diagrams consisting of categories (or groupoids) A’\, AN and
injective morphisms AA'“—>A)\, AM AR I this situation the 4%

are not necessarily embedded in A.

Example 2. Presentations of categories and groupoids are
examples of right limits, so presentations can be lifted to coverings.
A little care is needed in formulating the result correctly since the
construction is different in the two cases. First suppose that

A = cat(X; R). Then we have a diagram F@(R) %ﬁ(X) —8>A, where
d is the difference cokernel of ¢ and . If @ : A —A is both a

covering and a co-covering then the induced cover of FE(R) is again
an absolute free category, while the induced cover of ﬁ(X) is IB()?)
(X’ the induced cover of X). Thus we obtain a presentation

A= cat()?; ﬁ), where R consists of pairs (Fl, Fz) of edges of 13)()?)
which, in the standard model for induced covers, are of the form

t, = (), 3), £, = (r,, &) with (ry r,) € R and &a = r,0= r28. Ifaisa

COVERINGS OF RIGHT LIMITS 135

covering but not a co-covering the induced cover of F(R) may
contain isolated identities and one must introduce extra relations
corresponding to these. For groupoids all coverings are co-
coverings, so this last complication disappears and from a covering
a: A—A= gpd (X ; R) we get a presentation A= gpd X, R’), where
R consists of all pairs (7, 7,) of edges of m(X) of the form

f, = (r}, 8), T, = (r,, &) with (r;,r,) € R and &a = r,0 = 7,0.

Example 3. Normal presentations of groupoids. If in a presentation
A = Gpd(X; R) a relation r = (rl, r2) € R is such that Ity have the
same source, then we can replace r by the relation (s, €) where

-1
S -—1‘1

r, and e is the identity at the target of, say, r;. A similar
replacement can be made if r; and r, have the same target. If all
relations are of this type then we obtain a normal presentation of A
which we write as A = gpd(X; S =1). Here S denotes a subgraph of
7(X), and for each s € S with source i and target j, we are imposing
one of the relations (s, ei) or (s, ej) (or both, it makes no difference).
It is clear that in this case the map § : n(X) — A is a quotient map
whose kernel is the normal subgroupoid of 7(X) generated by S.

Applying the result of Example 2 to this case we obtain:

PROPOSITION 41. Let A= Gpd(X;S=1)andleta: A—A be a
covering morphism in Q Then 4 = Gpd()?; §=1), where X and §

are the induced covers of X and S. &

If we now repeat the arguments of Ch.14 using this proposition
we obtain a form of Reidemeister-Schreier theorem, which provides a
presentation of a subgroup H of a group G when a presentation of G
is known. One can also use Theorem 6, Corollary 2(p.94). For con-
venience, when X is a graph and S C n(X), we write gp(X;S = 1) to
mean the universal group of gpd(X;S = 1). (The universal group of



136 NOTES ON CATEGORIES AND GROUPOIDS

a groupoid A is U _(A), where 0 maps V(4) to a one-element set). In
other words, the relations imposed in gp(X; S = 1) say not only that
all s € S map to identities but that all identities map to the same

identity. With this notation we have:

THEOREM 14. Let G = Gp(X; S = 1), where X is a graph with one
vertex, and let H be a subgroup of G. Lety : G- Tr(G:H) — G be the
standard covering, and let )?, S be the induced covers of X,S. Then
H = gp(j(; SuT*= 1), where T* is obtained from a maximal tree T

in G by writing its edges as words In X. The canonical map X —>H
is constructed as follows: for each vertex i of G there is a unique
element t, of G such that the translation H - Ht, induced by it has
target 1 and lies in the groupoid generated by T; if X € Xij and

Xy = x then X —t, x t;l € H.
Proof. An exercise. B

The same type of argument can be used to prove subgroup
theorems for right limits of groups, but one cannot expect such
precise information as in the case of free products. We will indicate
the procedures which may give useful information in special cases.
First suppose that we have a diagram in § with objects Al (and
unspecified morphisms between them). If 4 = lim ar is connected
then any vertex group H of A is isomorphic with A/N, where N is a
simplicial groupoid spanning A. Let A’\ have components A'\“.

Then 4 = lim A)W, where the morphisms are now those induced on
components by the original ones. If M AN A are the canonical
maps then X = UAA”a'\“ spans A, so we can choose a tree contained
in X and spanning A. Now take N to be the groupoid generated by
this tree and write N = N(a)w)'l. The N are normal sub-

groupoids of the AM and their images in A generate N as normal
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subgroupoid. Also the morphisms of the diagram {A’\”} induce
morphisms between the IV’\“. Hence, by yet another application of
Proposition 18, we have H = A/N = lim A/\”/IV)W.

Suppose now that G = lim G)\ is a right limit of groups, and let
H be any subgroup of G. Taking A = Tr(G:H) we have A = lim AA,
where A)\ is the induced cover of GA. Hence we obtain as above a
description of H (which is effectively a vertex group of A) as a right
limit H = lim (AML/NML) of groupoids. Writing U(C) for the universal
group of a groupoid C, we obtain H as a right limit of groups:

H = lim U(AA“/N}W). Now if G" denotes the image of G in G, and
AN its induced cover, then the map arar is surjective and vertex
bijective, so it is a quotient map. Passing to components we have
quotient maps AM A ¢ A, and AMy NI = ZA“/I-VA“, where

N M~ NN AM i unicursal. Thus AMY/NM is isomorphic with a
retract of Z)W, so is the free product of a vertex group of AM and a
free groupoid. The vertex groups of AMe are isomorphic. with groups
of the form H N x 6)\ x'l, so we have finally H = lim B/\‘”, where each
BM: _ U(AM/NM) has the form (H N x G x71)  FM with FM a free
group. The B)w will not generally be embedded in H, but their free
factors H N x G x°1 will be embedded in H since A— A/N maps
vertex groups injectively.

The case of generalised free products gives most of the above
information since if A = lim Al then A =7 Z'\, where ar is generated
by the image of ar in A. Suppose that the group G is a generalised
free product G = G)\ and that H is a subgroup of G. Taking
A =Tr(G:H) and A)\ the induced cover of G)\, we have A =% A)‘
(see Example 1 above). It follows that 4 =% AM‘, where the AN
are the components of the A'\. If T is a maximal tree in U AN and
N the subgroupoid generated by T, then a slight modification of the

above argument gives H =7 H)W, where H)\# is the subgroup of H
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generated by the image of AM under the quotient map 4 — H with
kernel N. Writing N*#= N N AM and BM = U(AM/NM) we see
that BA“ is of the form (H N x GA x'l) % F)‘“ with FA'“ free, and H)W’
is a homomorphic image of BA'“. There is a mistake (found by

B. Baumslag) in [16], p.19 at this point, and the result stated at the
bottom of that page is false. The mistake lies in assuming that (in
the present notation) the map A)W/NML—»H)W is universal, i.e. that
HML = BML. The following example (due to B.H. Neumann) shows
that this is not so. Let G = gp(x,y, 2; x'ly X = y'l, y’lzy =z}
zlxz=x1). ThenG=X%Y % Z, where X,Y,Z are generated by
{y,z}, {z,x}, {xy} respectively. Also, G has a subgroup H of order 2,
generated by the element xyz. The groups X,Y,Z are torsion-free,
so H meets their conjugates trivially, and the groups B)w are there-
fore free (possibly trivial). But H is generated by their images, so
they cannot all be embedded in H. The argument does, however,
show that H =% H'\“, where each H)w contains some H N X\ GA xxlﬁ,
and as in the Kurosh theorem the X\ (for fixed A) are a set of
representatives of the double cosets H x GA. In special cases one
can say more. For example, suppose that G = G'= G?, with

G!N G%2=G% and let H be a subgroup of G such that H N xG%x1=1
for all x € G. Then the induced cover A° of G% in 4 = Tr(G:H) is
unicursal and is the intersection of the induced covers A, 42 of

Gl, G2 We therefore have A = A9 % C! (i =1,2), where C! is a
suitable retract of A?, and clearly 4 = A? % cls C2 We may now
choose a maximal circuit-free graph in A® and extend it to a maximal
circuit-free subgraph T of A% U Cl U C2 Then Tis a tree spanning
A, and H = A/N, where N is generated by T. Since we are dealing
with a free product, and since N D AO, we can apply Proposition 27,
Corollary, to obtain H = H! % H2, where H! = U(C'/NN C?) =

U(A'/N N A"). The full conclusion of the Kurosh theorem now
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follows: H is the free product of groups HI“, H?‘“, where
H*=HN mei x;i) « F1* (See Ordman [26], [27] for further

information on subgroups of generalised free products.)

Exercises

1. A category-map 8 : A— B has the unique factor-lifting property
(u.f.1.p.) if whenever a € A and af = blbz"'bn in B, there are unique
edges a;,a,,...,a, in A such that a = aa,...a and aie = b,

(i =1,2,...,n). Show that such a map has trivial kernel but need not .
be piece-wise injective. Show that a groupoid-map has u.f.Lp. if

and only if it is a covering.

2. Prove the following extension of Theorem 13 : if {: Z.ZinC
has u.f.l.p. (see Exercise 1) then the pull-back functor Pg : GZ—’GZ

preserves right limits. (Prove the analogue of Theorem 8 first).



CHAPTER 16
Homology of groups and groupoids

In this section we shall describe an approach to the homology
theory of groups which has a more geometric flavour than the usual
algebraic method. The basic idea is to use the simplicial groupoids
A" in place of geometric simplexes and to imitate the singular sim-
plicial homology theory of topological spaces as closely as possible.
The method gives a homology theory for groupoids as well as for
groups, and can easily be modified to apply to categories and mon-
oids. The homology of a connected groupoid is the same as the
homology of a vertex group, and for a general groupoid it is the direct
sum of the homologies of the components. Thus nothing essentially
new emerges; but the fact that all groupoid-maps induce maps of
homology groups gives one some useful extra freedom.

We first recall some basic definitions of homological algebra.

A complex is a family 4 = {An}n ¢ z of Abelian groups together with
homomorphisms 9, : A —A | such thatd d ., =0 for all n. The
homology groups of this complex are defined as Hn(A) = Zn/Bn,
where Z =Ker d, is the group of n-cycles and B, =1Imd_,, is the
group of n-boundaries. A is a positive complex if An =0forn<0
and is a negative complex if An =0 for n > 0. In the latter case one
often writes A" for A_, 8" : A" - A""! for 3_, Z" for Z__, B" for
B_n and H"(A) for H_n (A). A morphism of complexes 9 : A-A'is a
family of homomorphisms 6 : A —>Ar'1 such that 6_ 6;1 =d 0

1 for

all n. (One writes 69" = 90 for brevity). Such a morphism maps z,
141
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into ZI'I, Bn into B; and so induces a homomorphism
H (0):H (A)—H (4), making H_ a functor from the Category of
complexes to the Category of Abelian groups. If 6, ¢ : A— A" are
two morphisms of complexes then a homotopy from 6 to ¢ is a family
h= {hn} of homomorphisms b : A —A .| such that
h 0 , +0d h =0 - ¢, for all n (abbreviated hd'+ dh = 0 - ¢).
If such a homotopy exists then On —an maps Zn into Br'1 for all n,
and it follows that 6 and ¢ induce the same maps in homology, i.e.
Hn(e) = Hn (®) : Hn(A)—>Hn(A') for all n. Note also that if
h, : An -—>A;1+1 are arbitrary homomorphisms then o = hd' + dh is a
morphisms of complexes and we get a homotopy from 0 to -0 for
any morphism 6 : A - A",

To construct homology groups for a groupoid we start by taking
a standard model for the simplicial groupoid A™. Its vertices are
are the integers 0,1, 2, ..., n and its edges are all pairs (i,]), where
i,j €10,1,...,n}. In particular A° is a trivial group, and we take A1
to be the empty groupoid. There are obvious face-maps
@ A"l _, A" (0<k<n), where @} is defined to be the unique
groupoid-map which sends the vertices of A" ! in order to the
vertices of A" other than k. (Thus i i if i <k, and i — i+1 if
1> k).

One has the usual relations between these maps:

¢2¢?+1 = £1¢2+1 if 0<k<I<n+1.

Now let G be any groupoid and define a (singular) n-simplex in
G to be a groupoid-map A" — G. If we denote the set of such |
n-simplexes by Zn(G), then the face-maps ¢Z : A" 1, AR jnduce
maps x/lf‘; 12 (-2 (G) satisfying

Wl vk = gk ol i O<k<Igas L
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The Abelian groups Ct;(G) and C"(G) of n-chains and n-cochains in
G are defined by

c - U z, o2 TL z,
n ce> oceZ

n
where Z is the additive group of the integers and U. , rl- denote
coproduct (direct sum) and product (Cartesian product) in the
Category of Abelian groups. Thus an n-chain can be thought of as a
finite collection of n-simplexes, each with an integer multiplicity
(passibly negative), and an n-cochain as a map from Zn to Z. The
face-maps ¢} : 2 —Z2 _, induce additive maps o :C_—C_, and
oy cn-1 ., C" satisfying
1 o, k=0

0k =0k o1 and 87677 =587 8771 if O<k<I<n+l.

1-1 "k
n
If we now define the boundary maps d = kgo (-D¥ 8:: :C,—-C 4,

n
and the coboundary maps 6" = 3, (-Dk BZ . Cc"1_,C" then the
k=0

relations (1) imply 9, ,, d, =0, &" &" *1 -0 (n > 0), and we obtain
two complexes

9, 9,
..——>Cn-—>cn_1—->... 1——>c0'—>0

0—>C0—8—}C1——>...—>Cn_lir>1cn——>

called the chain complex and cochain complex of G. The homology
groups Hn(G) and H"(G) of these complexes (n > 0) are called the
homology and cohomology groups of G (with integer coefficients).
The groups Z_ = Ker d, Z" = Ker 81 are the groups of n-cycles
and n-cocycles in G; the groups B =1Im 8n+1, B" = Im &" are the
groups of n-boundaries and n-coboundaries. (If one extends these

complexes by including C_,, C™! and the maps 9y 8%, one obtains
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the augmented chain and cochain complexes which give rise to the
reduced homology and cohomology groups. We shall not discuss
these further. Note that for the unaugmented complexes we have
Hy(G) = C/B, H(G) = Z°).

Any groupoid-map 0 : X — Y induces maps EH(G) : ZH(X)HEH(Y)
which are compatible with the face-maps 1//: : En —»Zn_l. These in
turn induce additive maps CH(G) : Cn(X)—»Cn(Y) and
C"(6) : C"(¥Y)— C™(X) which form morphisms of complexes. Hence
0 induces maps H ) : H (X)—>Hn (Y) and H"(0) : H*(Y) — H"(X).
One easily verifies that En is a covariant functor from G to S, C,
and Hn are covariant functors from § to &, and C?, H" are
contravariant functors from G to @ (@ the Category of Abelian
groups).

We shall now show that Hn and H™ are homotopy invariants of
groupoids, i.e. if 6, 6; : X —Y are homotopic groupoid-maps, then
Hn(Go) = Hn (61) and H"(GO) = H“(Ol) for all n > 0. To see this, we
recall from Ch. 13 that any homotopy (natural transformation) 6, — 6,
induces a groupoid-map 7 : X x A' .Y such that Bo T = (90, py 7= 61,
where po, py 0 X —>X x A are the canonical embeddings. It is
therefore enough to show that to and p; induce the same maps in
homology and in cohomology. We do this by constructing homotopies
between the corresponding maps of chain and cochain complexes.

Any n-simplex A — X induces canonically an ‘‘n-prism’’

A" x Al X x Al , S0 we have a canonical map

€ EH(X)—>Pn(X x Al), where Pn(G) denotes the set of n-prisms in
G (i:e. groupoid-maps A" x Al - G). By analogy with a geometric
n-prism (which is an (n+1)-dimensional solid) we can ‘‘sub-divide’’
the prism A x Al into (n+1)-simplexes o’; AR AR AL (0<k<n),
where a’; is the unique groupoid-map which sends the vertices

0,1,...,n+1 of A®*1 to the vertices
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(0,0), (1,0), ..., (k,0), (k,1), (k+1,1), ..., (n,1), respectively, of A™x Al
(This map is unique because A" x Alis again a simplicial groupoid).
If we denote by (fi);’ the “face-map” A" !x Al - A" x A; induced by
the standard face-map qﬁ;’ : A1, A7 then the simplexes o, satisfy

the following relations:

o1 " if O<I<k<n,

+1
AR S
0;1(-1 7, if 0<k<I-1<n,
+1 .
(2) ¢Z+10-Z = ¢Z OI;(_I if 1<k\<n:
+1 1
P00 = Y% Ph % = Vi

where v, v, are the two ‘“‘ends’ of the prism, i.e. the canonical

embeddings A" — A" x Al. Formally, these relations imply
@ CED e (S o) + (1 o D) (XD ¢ =vg - vy,
1

For any groupoid G, the maps o}, : A"l An « Al induce maps
from F’n (G) to En+1 (G). Taking G = X x Al and composing with the
canonical map ¢ : E(X)—»Pn X x Al) we therefore obtain correspond-
ing maps 7]; : En(X)—>En+1(X x A1), These in turn induce maps
pﬁ 1 C (X)—-C (X x AY). The face-maps ¢>;‘+1 similarly induce
the standard face-maps afm : Cn+1(X X AI)—> Cn(X x A1) and the
maps $’1’ of prisms induce 8:1 : Cn(X)——>Cn_1 (X). The relations (2)
therefore imply corresponding relations involving the p’s and d’s
(with order of factors reversed) and the formal relations (3) imply

genuine relations

_ ,(0) (1)
Pnan+1+anpn-1_#n “Hy
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where p = 2 (-1 pk and #(O)’ y(l) are the maps induced on n-chains

by the embeddmgs for By X—X x Al. Thusp = {p } is a homotopy
from { (0)} { (1)}. A similar argument applies to the correspond-

ing maps of cochain complexes and proves

THEOREM 15. If X is any groupoid and gy, py : X— X x Al are
the canonical embeddings, then Hn(/LO) = Hn(yl) and H"(yo) = H“(yl)
foralln>0. m

COROLLARY 1. If the groupoid-maps 00, 0, : X—Y are homotopic
then Hn(eo) = Hn(el) and H"(@o) = H”(@l) for all n > 0.

Proof.  There is a groupoid-map 7 : X x A! - ¥ such that 0o = HoTs
0, = py7, so H (60) = Hn(po) Hn(r) = Hn(ul) Hn(r) = HH(GI), and

similarly for cohomology. m

COROLLARY 2. Inner automorphisms of groups induce identity

maps in homology and cohomology.

Proof.  Inner automorphisms of a group G are homotopic to the

identity map on G. B

COROLLARY 3. Eguivalent groupoids have isomorphic homology

groups and 1somorphic cohomology groups.

Proof. 1f 6 : XY is an equivalence then for some ¢ : ¥ — X,
0 ~ 1y and ¢0 =~ 1. Thus H (6¢) and H _(40) are identity maps
and Hn(0), Hn(¢) are inverse isomorphisms. The same applies to

cohomology. B

Definition. A groupoid G is acyclic if H (G) = H"(G) =0 forn>0
and HO(G) = HO(G) = Z. (This definition is more reasonable in terms
of reduced homology: it says that all the reduced homology and

cohomology groups vanish).
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COROLLARY 4. Any non-empty simplicial groupoid A is acyclic.

Proof. By Theorem 2, since A is connected with trivial vertex
group, it is equivalent to the trivial group A®. Hence it is enough

to show that AC is acyclic. Now A° has exactly one n-simplex for
each n, so all the groups Cn(AO) and C*(A°) are isomorphic to Z.
One checks that d, and 3" are zero if n is odd, and are isomorphisms

if n is even, and the result follows.®

COROLLARY 5. [If G is any groupoid with components GA, and if
AN s any vertex group of GA, then

(i) H(®=e0HGY , HYG) =TT,

A A
(i) H(GM=H Y , H(GY = HU4Y),
(iii) Hy(G) =0 Z , H@=Tlz

A A

Proof.  Since the simplicial groupoids A" are connected, it is

clear that 2 Q) = .U. E (GA) with face-maps induces by those of
the separate components Hence C (G) oC (GA) c'(G) = -HC"(G’\)

and (i) follows easily since the boundary and coboundary maps
respect these decompositions. Item (ii) is a consequence of
Corollary 3 above and Theorem 2. Item (iii) will follow from (i) and
(ii) if we can show that Hj(4) = H%A) = Z for any group 4. This is
left as an exercise. B

To illustrate the fact that the homology of groupoids has
interesting features not easily expressible in terms of groups, we
shall now show that universal morphisms of groupoids induce
isomorphisms in homology and cohomology in dimension n > 2. This
can, of course, be proved by looking at the vertex groups and using

known facts about the homology of free groups and free products of
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groups; but there may be some point in doing things the other way
round. The groupoid result is a natural one and should have a direct
proof. The geometric technique we adopt is that of barycentric
subdivision of simplexes, which we use to construct chain and
cochain homotopies in much the same way as we used subdivision
of prisms above. The method is somewhat complicated and we shall
not give all the details. It would be interesting to know whether
there is a simpler direct proof of the theorem.

Starting with the standard simplicial groupoid A" with vertices
0,1,...,n, we take as our model for its full barycentric subdivision
the simplicial groupoid A" whose vertices are all the non-empty
subsets of {0, 1, ..., n} (a barycentre for each subsimplex). We are
interested chiefly in certain n-simplexes in K", which may be
defined by specifying their vertices as follows:

(i) define a : A" A" by i i} (0<i<n);

(ii) for any permutation 7 of {0, 1, ...,n}, say j -, define

BT A" 5 A by i »—-»{770, 7y, ...,771.§ (0<iKn).

We can think of a”, B2 as n-chains, i.e. elements of CH(Z“), and we
now define 8" € C_(A") by

Bt = Eﬂ(sign ™) B, .

(B" may be thought of as a standard subdivision of a?).

The face-map P A1 _, A" sends each set of vertices of
A™1 to a set of vertices of A™ and so induces a groupoid-map
52 : A1, A% We shall refer to A" as a subdivided n-simplex and

to the E;; as its subdivided faces. The formal sum 2,(-1)¥ 52
k

induces, for each m > 0, a map 5:7 : Cm(Z"'l)qu(K"), and we also
have the usual boundary maps o Cm(K")—»Cm_l(Kn). One

verifies (omitting superfluous labels) that

HOMOLOGY OF GROUPS AND GROUPOIDS 149
4 a"9=a"19, B9 ="19,99=0,09=099.

PROPOSITION 42. There exist chains 7™ €C_,, (A™) (n > 0) such
that 170 + 7™ 8 = a - B" for all n >0 (where 7'} is to be

interpreted as 0).

Proof. We use induction on n. Since A? is a trivial group we have
a® = B°, so we may take 7° = 0. Letn » 1 and suppose that 7 is
defined for 0< i < n-1 and that 7 9 + ni'15= o - B for0<i <n-1.
Applying 3 to the last of these equations we get

77199 = (@ - B 19, i.e. 77199 = (¢ - B7)9. Thus

a - B - gl d is an n-cylce in A". But A" is simplicial, therefore
acyclic (Corollary 4 to Theorem 15), so there is an (n+1)-chain

77 in A" such that 770 = @ — B — 719, and this completes the

inductive step. &

For any groupoid G, let —in(G) denote the set of all subdivided
n-simplexes in G (i.e. all groupoid-maps A" . G), and let
EH(G), E“(G) denote the corresponding groups of subdilfided chains
and cochains. The subdivided face-maps 52 : A" A" induce
maps Eﬂ —»iﬂ_l whose alternating sums give “subdivided” boundary
and coboundary maps 5n : En —>_én_1 and gﬂ :C™1,C". We thus
have two new complexes {En }, {E”} and the relations (4) imply that
the " and B" induce morphisms of complexes a, B* : {EH(G)} —
{Cn(G)} and a*, B* : {C"(G)}—M{E"(G)}. Further, the chains
7t € C. 4 (A™) of Proposition 42 induce maps C_(G)—C_,,(G) and
Cc"*1(G) - C*(G), and the proposition implies that these maps give
homotopies 7_ : a*——»ﬁ*, n* : a* — B*.

We define a subdivision for G to be an assignment, to each
n-simplex 0 : A" -G (n 0,1,...), of a subdivided n-simplex

o: A" G in such a way that
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©) a0 = o and R0 = R0

for all n-simplexes o and all k=0,1,...,n. Such a subdivision gives

rise to morphisms of complexes )\* : {CH(G)} — {EH(G)} and

X { UG} - {CM(@)} such that A_a_ =1 and a* A* = 1. If we

define the corresponding subdivision chain and cochain maps to be

s, =M, B, {C(®)} —1{C,(G)} and s* = B* )* {cr@) - {ce)}

we see that h_= A 7 is a homotopy fromA_a =1toA B =s,
* * Ik * ok * Tk *

and A* = p* X* is a homotopy from 1 to s* We therefore have:

PROPOSITION 43. Any subdivision chain or cochain map for a
groupoid G is homotopic to the identity and so induces the identity

map in the homology or cohomology of G. R

Now let 6 : A— G be a universal groupoid-map. Then each
edge x of G has a canonical form x = Xy Xy... X, where the x, are
images of edges a; of A and the products a;a,,, are not defined in
A (see Theorem 4, p.73). We write |x| = n for the length of x in this
reduced form; x| = 0 if and only if x is an identity of G. For a
simplex 0 in G we define the diameter |o| of o to be the length of
its longest edge, and for a chain c in G we define the mesh |c| of ¢

to be the maximum of diameters of the simplexes occurring in c.

LEMMA. There is a subdivision chain map s : {Cn(G)} - {CH(G)}
such that, for every c € C_(G), |cs|<—;— (Je| + D).

Proof. ~ We have to assign to each n-simplex o : A" -G a
subdivided n-simplex o: A" G satisfying conditions (5) above.
This is easily seen to be equivalent to choosing, for each n-simplex
o (n>1), an (n+1)-simplex o’ with én H o' = o (adding a barycentre).
For we may then define o recursively as follows: ¢ = o if n=0, and

forn>1, o is the unique map A" _, G whose subdivided faces are
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given by ;S’I:;= @ (already defined) and such that ﬂ; =o', where
p: AP AT s given by i 1{i} (0<i<n) andn+1—10,1,2,..., 1}
(the barycentre of A" in A,

Our choice of barycentres is governed by the reduced forms of
the edges of G. For any edge x with reduced form x = a; ay...a.,
a; € A (strictly, x = (a, 6) (a2 0)... (an 0)), we define a bisection
x=xx by x, =aja,.. A X, = 4qe 8, where k = [n/2], with
the obvious conventions if n=0 or 1. Then |x,| and |x | are both at
least ;—(le -1) and at most %(lxl +1). If ris a 2-simplex in G with
edges x,y,z, say z = xy, we define the median from the edge x to be

1.
m=Xx X=Xy

Since (in the above notation) the target of ay is different from the
source of a, ,,, there cannot be cancellation in both the products
x,-m and x;l-m; hence either |z| = |x,| + |m| or |y[ = [x [ + [m[. It
follows that |m|<max (|y|, |z|). Moreover, if x is a longest edge of
7 (i.e. |x| = |7]) then lxll and lxrl are both at least ;—(lrl -1), so
jml < Ir] -2dlr| -» = L .

We now choose as barycentre for each simplex of G the bisector
of a longest edge. More precisely, for a 1-simplex o : Al G we
regard o as an edge of G and define o’ to be the unique 2-simplex

1

with faces qﬁg o =o, qu o'=a, gb(z) o'=0;". For an n-simplex o(n>2)

we define o' inductively as follows: choose an integer i such that
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the i th face ¢>§‘ o of 0 has maximal diameter, and let o' be the unique
(n+1)-simplex with &7 :} o' =0 and ¢?+1 o' = (G 0). This con-
struction defines a subdivision chain map s, and it remains to show
that IUSK% (lo| +1) for all n-simplexes o. This is clear for n=0.
For n>1, let g be any edge of a simplex occurring in os. If g
already occurs in 7s for some face 7 of o, then |g| Q%(]ol +1) by
induction hypothesis, since |r|<|o|. If not, then g has one end at
the barycentre b of o (which is a bisector of a longest edge) and is
of one of two types: (i) g joins b to a vertex of o; (ii) g joins b to a
bisector of some edge x of 6. In case (i) g is the median from a
longest edge of a 2-simplex in o, so || g;—(‘ol +1) by the argument
above. In case (ii) g is the median from x in a 2-simplex whose
other edges y,z meet at b and are of type (i). Since |g|<max(|yl,|z|)
the inequality |g|<;—(|a| +1) follows. B

THEOREM 16. [If 6 : A—G is a universal groupoid-map then Hn(e)

and H"(0) are isomorphisms for n>2.

Proof. Let C,= C,(G) and let D C C,, be the subgroup generated
by all n-simplexes in G whose diameters are 0 or 1. Clearly {Dn}
is a subcomplex of {Cn} and we shall show that the inclusion map
{Dn} - {Cn} is a homotopy equivalence (whence {Cn} and {Dn}have
isomorphic homology groups in all dimensions). To do this it is
enough to construct maps ¢, k : C—>C(tn :C,—C,, k, : Cn—» Cn +1)
satisfying (i) 1-t = kd + Jk, (ii) t, maps C_ into Dn and (iii) ¢
induces the identity map on D . For then t, viewed as a map from
C to D is a homotopy inverse to the inclusion map. We have at our
disposal the subdivision map s : C,—C, given by the lemma and a
homotopy h : C —C ., with 1-s = hd + 0h given by Proposition 43.
Note that h is constructed from the standard chains 7" of

Proposition 42, and since s maps D to D, h will map D toD_ ..
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If 0 is any n-simplex of diameter > 1 then, by the lemma, |os|<|a|.
Hence some iterate s of s maps o into Dn. We choose r = r(0) to
be the least such integer and define ok = o (1 +s+sP 4. +s("1))h,
with ok = 0 if 0 is in Dn already. This defines a map k : Cn — Cn +1
by additivity, and if we put ¢ = 1-kd - Jk, we have t: C —C_
satisfying (i) and (iii). To show that ¢ satisfies (ii), we observe

that o(1 - )k = o(1 - s“))h = oh (mod D). Hence modulo D,

o(1-8)t =0a(1-s)-0(1-s)kd - 0d(1- s)k (since sd = d s)
=0(l-s)-chd -o0dh
=0.

Thus ot = ost (mod D) and, by induction, ot = oVt =0 (mod D) for
sufficiently large r.
A similar argument works for cohomology. Here we take D" to

be U Z, where o runs through all n-simplexes of diameter 0 or 1.
o

Then D" = Hom (D, Z), C" = Hom (C,, L), and applying the functor
Hom (-, Z) to everything above, we obtain maps ' : D* — C® which
form a homotopy inverse to the canonical map {C"}—» {D"}.

Now 6 : A— G induces a morphism of complexes
0, : {Cn(A)} — gDn}. If we denote by T_(A) the group generated by
all trivial n-simplexes in A (those with all edges equal to an identity
of A), then {Tn(A)} is a subcomplex of {CH(A)} and is mapped by
0* into {TH(G) }, which is generated by simplexes of diameter 0 in
G. It is an easy consequence of the solution of the word problem
for G, that every simplex of diameter 1 in G is the image of a unique
(non-trivial) simplex in A. Hence 6 induces an isomorphism of
complexes {Cn(A)_/Tn(A)} —»{Dn/Tn(G)}, hence induces isomorphisms
between their homology groups. We leave it as an exercise to show

that the homology groups of {Cn(A)/Tn(A)} are, for n>2, canonically
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isomorphic with the homology groups of {Cn (A)} i.e. the homology
groups of A. Similarly the homology groups of {Dn/Tn(A)} are, for
n>2, canonically isomorphic with the homology groups of {Dn},
which we have already shown are canonically isomorphic with the
homology groups of G. Hence 6 induces isomorphisms Hn(A)—»Hn (&)
for n >2, as claimed. In the case of cohomology one has complexes
{T"(A)} , {T"(G)} of cochains on trivial simplexes, and canonical
surjections {C”(A)} N {T"(A)} , {D" } - {T"(G)} whose kernels are
complexes with homology groups H"(4), H™(G) in dimension n>2.
Again 0 induces an isomorphism of complexes between these kernels

and hence induces isomorphisms H*(G) — H*(A) forn>2. &

COROLLARY 1. [If G is a free groupoid then Hn(G) = H"(G) =0 for

n>2.

Proof.  There is a universal groupoid-map 0 : A— G with 4
unicursal (e.g. A can be an absolute free groupoid with all com-
ponents isomorphic with AI). Since the components of A are
simplicial they are acyclic, so H_(4) =H"(A) =0 for n >1. The

result follows now from the theorem. B

COROLLARY 2. IfG = « G then, for n>2, H_(G) = @ H, (G") and
#°(G) =TT H7(GY).

Proof.  There is a universal groupoid-map 6 : A — G where

a-=11 GA. By Corollary 5 to Theorem 15, we have Hn(A) =0 Hn(GA);

H™(A4) = || H*(G), and the result follows. m

There are two directions in which the simplicial homology
theory of groupoids can be extended. Firstly, one can apply the
same methods to categories and monoids, replacing A" by the free

category on the graph [n], i.e. the category with vertices 0,1,...n
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and edges all pairs (i,j) with i<j. Theorem 15 goes through almost
unchanged, but Theorem 16 requires more care, and we shall not
pursue the topic further. Secondly, one can consider homology and
cohomology with arbitrary coefficients (instead of the integer
coefficients used so far). It is perhaps worth looking at this second
generalisation briefly in the case of groupoids.

In defining the homology of a group G with general coefficients
one is provided with a G-module M. i.e. a representation of G by
automorphisms of an Abelian group. The corresponding notion for a
groupoid G is an additive representation of G, i.e. a functor from
G to (. Such a representation is given by a family M = {Mi} of
Abelian groups (i € V(G)) and isomorphisms 6€ : MM (for edges
g€ Gij)' If we forget the group structure on the M we get a
representation G— S to which corresponds a covering y : G— G
(see Ch. 13, Proposition 30 and the preceding discussion). It is
natural to consider the groups Hn (G) and H™(G), and this would be
the correct procedure if we were dealing simply with a permutational
representation. But the additive structure of M gives extra structure
to G which we must take into account. Without loss of generality
we can take the fibres of y: G —G over the vertices of G to be
iy'1 = M. These are Abelian groups, and so are the fibres gy'l
over the edges of G since, for g € Gij, the edges covering g are in
one-one correspondence (canonically) with pairs (m,n) € M* x M’
such that m® = n. Since € is an isomorphism these pairs form a
subgroup M€ of M' x M isomorphic with M’ and M/, Wé may identify
the fibre gy -1 with M. More generally, if o is any n-simplex in G
then o-y'l, the set of n-simplexes in G which cover o, can be
identified with a subgroup M of MO xMx... x Ml”, where
Igydgyeesy in are the vertices of 0. (Apply the corollary to

Proposition 35 to maps A" —G. M’ is isomorphic with M/ for each
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vertex j of o). Thus in = Zn(é) has an additive structure; it is the
disjoint union of Abelian groups M° for o € Zn = En(G). Further-
more, the face-maps En —+2n_1 preserve this partial addition. We
may therefore define modified chain and cochain groups by
cGm=- o M, cGm= 11 n°.
n o€ Zn o€ Zn

The alternating sums of the face-maps induce boundary and
coboundary maps which are group homomorphisms, and the homology
groups of the resulting complexes are denoted by Hn(G,M) and
H"(G,M). An equivalent construction is to take the ordinary chain
and cochain complexes of G and pass to the quotient complex
(subcomplex in the case of cochain) obtained by imposing all the
additive relations in % . Note that if we take the trivial
representation of G on Z (i.e. all M’ = Z and all €€ = identity) we
just obtain the original groups Hn(G) and H*(G).

For the case of permutational representations the situation is
as follows. From a representation G—& in which G acts on sets X’

we can form two natural additive representations given by families

ofgroupsM:{Mi} andN:{Ni}, where M = @ iZ, N = ﬂiZ.
x €EX x €X

Thus M! is the free Abelian group with basis X!, and G acts by
moving the basis elements; N is the set of all functions b X1

and g € Gij acts on ¢ by the rule ¢g = ¢ : X/ —Z, where

xy = (xg'1)¢. If G is the covering groupoid of G corresponding to
the original representation G — then H (GM) = Hn(é) and

H"(G,N) = H"(G). For example, if G is a group and we take the
right regular representation of G, then X = G, and G is the universal
covering groupoid of G, which is simplicial. Since simplicial
groupoids are acyclic we have Hn(G,M) = H*(G,N) =0 for n>1,
where now M is the group ring of G and N is the module of integer-

valued functions on G.
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Now consider any additive representation of a groupoid G on a
family M = {Mi} of Abelian groups, with corresponding covering
y: G—G. If 0 : K—G is any groupoid-map we get an induced
representation of K on the family M* = {M{k}, where M{k =M 6,
j € V(K). The corresponding covering « : K- K is the pull-back of
y by 6 (Proposition 30), and we have an induced groupoid-map
6 : K—G. It is clear that § preserves all the additive structure of
En(f(), and therefore induces morphisms of complexes
{c, & M)} —{C (G} and {C"(G, M} — {C(K, M )}. Hence we
obtain morphisms Hn(K,M*)HHn(G,M) and H*(G,M)— H" (K, M*)
induced by 6. If 6 : K—Gis a universal morphism, then so is
6 : K G (Theorem 8). We may therefore apply the barycentric
subdivision argument to 0 with a little extra care. The definition of
subdivision for G must be modified to include the condition that the
assignment 0 — 0 should be compatible with the extra additive
structure on Zn(é) and in(é) arising from the representation. One
can obtain such a subdivision for G satisfying the required mesh
inequality by lifting the given subdivision for G in an obvious way.
Since 6 preserves the addition in EH(R), all the other constructions
used in proving Theorem 16 yield maps preserving addition and
therefore lead to chain maps and chain homotopies as before. It
follows that 0 induces isomorphisms HH(K,M*)—)HH(G,M) and
H"(G,M)—»H"(K,M*) for n>2. This implies that free groupoids have
trivial homology and cohomology in dimension > 2 (for arbitrary
coefficients) and that, for a free product of groupoids
G- *GM, H (G,M) = o H_(GM MY, HG,m) = TTHA(GMMY), where
M is the ““induced module’’ for GA.
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Exercises

1. If Gis a group, verify that the complexes {Cn(G)} and {C"(G)}
defined above are isomorphic with the standard (inhomogeneous)

chain and cochain complexes of G.

2. Show that if G is a group and M is a G-module, then the groups
Hn(G,M), H"(G,M) defined simplicially are the usual homology and

cohomology groups of G with coefficients in M.

3. Use the simplicial definitions to show that if G is a group and
M is any G-module then Hn(G,M') =0 and H*(G,M") =0 forn > 1,
where M'=M @ ZG and M" = Homg (ZG,M). (ZG is the group ring
of G). ¢

4. Show that if @ : A— G is a universal morphism of groupoids then
HI(G) is an injection and H(6) is a surjection. Show, further, that
if V(6) restricted to each component of 4 is an injection then both

HI(H) and H1(6) are isomorphisms.

CHAPTER 17
Calculation of fundamental groups

As our last application of the theory of groupoids we shall
prove a van Kampen-type theorem for fundamental groupoids which
is a convenient tool for the calculation of the fundamental groups of
cell-complexes. It provides another illustration of the usefulness
of transferring attention from groups to groupoids; the corresponding
theorem for groups is less natural and harder to apply.

We have defined in Ch. 6, for a topological space T and a sub-
space I, the category P(T,I) of paths in T with end-points in I, and
the groupoid #(T,I) of homotopy classes of such paths. The funda-
mental groupoid of T is m(T) = #(T, T), and the fundamental group of
T at a point 7 is the vertex group of #(T) at i, so knowledge of the
fundamental groupoid is enough to determine the fundamental groups.
Our object is to compute #(T) from the fundamental groupoids of
suitable subspaces, and we shall confine attention to the simplest

case in which T is given as the union of two subspaces.

THEOREM 17. Let T,, T2 be subspaces of T such that T is the
union of the interiors of Tl’ T2, and let T0 = T1 n T2. Then the
diagram

#(T ) ———— n(T,)

77(T2)—->77(T)

159
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is a pushout square in G, the maps being those induced by the

inclusion maps of spaces.

Proof.  We first prove the analogous assertion for the categories
of paths. Write P(T) for P(T, T), etc. and consider the diagram

P(TO)—_—BI_> P(T))

B, ay
P(T))——g—P(D),

where the a , 3, are induced by inclusions of spaces. Let C be any
category, and let y  : P(T,)—C be category-maps such that
B1¥1 =B,7,- We want to construct y : P(T)— C such that
y,=ay @ =12).

Since a,, B, are obviously injections we shall make
identifications so that P(TO) C P(TV) CP(T) w=12). If
p:10,7] T is any path in T then, since the interiors of T, T2
cover T, there is (by the Lebesgue covering theorem) a positive &
such that all (closed) intervals of length < & in [0, r] are mapped
either into T, or into T, by p. Hence there is a finite dissection
0 =ry<r;<...<r_ =rof [0, r] such that each [rk_l, rk]p is contained
in T1 or in T2. This gives a factorisation p = Py Py:-- P, in
P(T) with each p, : [r, ;, r,] =T lying either in P(T,) or in P(T,),
and shows that P(T) is generated as a category by P(Tl) and P(TZ).
Since v, and Y, agree on P(Tl) n P(T2) we may unambiguously
define Py =p,7v, €Cif P, € P(T,). Now define
py =(yy) (pzy) ...(pny),observing that this product exists in C

because the common end-point of Pg.1 and py liesin T, N T,, sois
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mapped to the same vertex of C by both y; and y,. We must, of
course, show that py is independent of the particular dissection of
[0,r] chosen. If 0 = Sg<s;<...<s_=r is another dissection with
each [s]._l, sj]p in T1 or T2, then the common refinement with
dissection points all the distinct r,, s; has the same property, so
we may assume that {sj} is a refinement of {rk } The resulting
factorisation p = q; - q, ... - q, then has the property that each Py
is a product of ¢’s lying in the same P(T,) as p,. The equation
(ply)(pzy) (pny) = (qu)(qzy) (qmy) follows since each y , is a
category-map.

The map y : P(T)— C, which is now well-defined, is obviously
a category-map. Its restriction to P(T ) is y,, and it is unique with
this property since P(T) is generated by P(T,) and P(Tz)' Hence
(1) is a pushout square in C.

Next, suppose that the category-maps y,, : P(T )—C (v = 1,2)
are such that equivalent paths in T, have the same image under y,,
(see p.32 for the definition of equivalent paths). We shall show that
the induced map y : P(T) — C then has the same property with
respect to equivalence of paths in T. Observe that any constant
path in T is a constant path in T for v = 1 or v = 2 and is therefore
equivalent, in T, to a path of length zero, i.e. to an identity of
P(T ). Hence, by our assumption on y,, its image under y,, is an
identity of C.” Thus y maps all constant paths in T to identities of
C. If p,q are equivalent paths in T then there exist constant paths
c,d such that p'= p-c and ¢’ = q-d are of the same length and are
homotopic with fixed end-points. This means that there is a
continuous map h : R— T, where R is the rectangle [0, r] x [0,1],
which on two opposite edges of R induces the paths p), ¢, and on the
other two edges induces constant paths a, b, as indicated in the

diagram below. Again, by the Lebesgue covering theorem, there is
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a dissection of R into small rectangles Rij = [ri_l, ri] X [sj_ v sj],
where 0 = ro<r;<... <r,=r and 0 = Sp<sy<u. <, = 1, such that
each Rij h is contained in T} or in T,. The edges of the Rij

determine paths P, al.]. as shown.

©,1) L (r,1)
R
a & ax-l,j RU /\aij
ij
Pi 1
(0,0 > (1,0
p
Clearly, p'= P10°Pgg P q¢'= Din'Pan’ - Pmns
a=ag -ag, ... a, and b= @,1°8no -+ -a . Now the rectangle

Ri]. is mapped by h into T, say, and it is easy to construct from

this map Rij — T, a homotopy in T, from Pij-1"%; to a,_ 1, Pijr It
follows that y, (and therefore y) maps these two paths to the same
edge of C. Now consider the diagram in C consisting of all the
images under y of the paths a5 e It is a rectangular grid in which
each small rectangle commutes, as we have just shown. It follows
easily that the whole diagram commutes, and in particular, that the
large rectangle consisting of the images of the edges of R commutes.
Therefore (p'y)(by) = (ay)(q'y), that is (py)(cy)(by) = (ay)qy)(dy).

But a,b,¢,d, being constant paths, are mapped by y to identities, and

we deduce that py = qy, as claimed.
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Finally, consider the diagram

7T(T0) Bl > Tf(Tl)
@ B, a
ﬂ(Tz) — > 7(T)
, 2,

in which the ;z_y, EV are induced by a, BV. (Note that Ew EV are

no longer injections in general). The groupoids #(T), #(T,) are
quotients of P(T), P(Tv) by the appropriate relations of equivalen_ce
for paths, and we denote the canonical surjections by o : P(T)— 7(T)
ando, : P(T))—n(T,) (v=0,1,2). If G is a groupoid and

;V : (T,) — G(v = 1,2) are groupoid-maps satisfying Bl ;1 = Ez ;2
then, forv =1,2, y, = ay;v: P(T,) -G is a category-map which maps
equivalent paths in 7, to the same edge of G. Since
Biv1=0¢B1Y1=94By¥,=B,v, v, and y, induce a category-map
y : P(T)— G which maps equivalent paths in T to the same edge of
G. Therefore there is a groupoid-map )7 : m(T) - G such that y = 0:)7
It is easy to check that a,y =y, (v = 1,2) and that y is unique with
this property, and this shows that (2) is a pushout square in §. B

The vertex set of #(T) is inconveniently large for applications,
so we prove a modified version of Theorem 17 with more manageable

vertex sets.

THEOREM 17'. Let T, TO, T,, T2 be as in Theorem 17, and let |
be a subset of T which meets every path-component of T, T, and
T, (and therefore meets every path-component of T). Then the

diagram
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(T, J o) (T, ,J,)

3)

(T, ,J,) —— (T, ])
is a pushout square in G, where J,denotes ] N T, (v=0,1,2).

Proof.  The deduction of this result from Theorem 17 is purely

algebraic. Suppose that we have a pushout square
) % 1

in § with all maps vertex-injective. The vertex sets I,of G,

(v =0, 1,2) can be taken as subsets of I = V(G), and then I, U 12 =1,
LnL = IO. Let J be a subset of I containing at least one vertex
of each component of GO, G1 and G2, and let H, H  be the full
subgroupoids of G, G, with vertex sets J, J,, where J, =] N I,
Then (4) induces a commutative diagram

’

0 'Hl

H !
©) 0, l b
H———"H
2 ?,
which, as we shall show, is also a pushout square in §. The
theorem then follows on putting G = #(T), G, =n(T,). By Theorem

2, H, H, are retracts of G, G, and we shall construct retractions
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p:G—H, p,: G, —H  which form a morphism of diagrams from (4)
to (5). First choose for each i € [, an edge x? in G, from 1 to some
vertex j € J,, with xl0 =e, ifie],. These xé) generate a unicursal
normal subgroupoid N, of G, which is the kernel of a retraction

Py : GO—eHO. Next for each i €[ (v = 1,2) choose an edge x;J in
G, from i to some j € J  such that (i) xf =e fori€ ] and (>ii)

x;’ = xf.) 0, if i €I,. Again we have unique retractions p, : G —H,
with kernels N , generated by the xf. We may now define, for each
1€l X, = x;.J ¢>V ifi € IV, and so obtain a retraction p : G—H with
kernel N generated by the images of N, N,. If we think of G as the
right limit of the G, with maps 01, 92 we are in precisely the
situation described by Proposition 27 (i) (quotients commute with
right limits). We conclude that H = G/N is the right limit of the

H, =G, /N, with respect to the appropriate maps, and it is clear
that the appropriate maps are those in.(S). It follows that (5) is a

pushout square. (Another argument is indicated in Excercise 1

. below). m

Note. One might hope that this algebraic argument would work for
arbitrary right limits, but there are difficult combinatorial problems
involved in the choice of retractions. Some general conditions
under which a coherent choice is possible are given in [5]. Perhaps
a study of the question would throw light on the difficulties
encountered in Ch.15 when attempting to ptove subgroup theorems
for right limits of groups.

We end by indicating how Theorem 17’ is used to calculate
fundamental groups in simple cases. If a space X is contractible
(i.e. 1y is homotopic to a constant map X — X) then X is homotopy
equivalent to a one-point space, so 7(X) is equivalent to a trivial

group, that is, #(X) is simplicial. This is the case, for example if
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X is the unit interval I = [0,1] or the n-cube I". If a space T can be
covered by the interiors of a finite number of contractible spaces
which intersect decently then repeated application of the theorem
yields a presentgtion of #(T,]) for suitable ] C T. For if we know
presentations of #(T,, J,) for v = 1,2 and a set of generators for
n(TO »Jo), the pushout square (3) immediately gives a presentation
of w(T, J). If T is path-connected one can then obtain a presentation
of its fundamental group by retracting #(T, J) to a vertex, which is
equivalent to adding relations R = 1, where R is a maximal tree

(see Theorem 6, Corollary 2, p.94).

The simplest non-trivial case is that of a circle S!. It can be
covered by the interiors of two copies T, , T, of the unit interval I
whose intersection T has two path-components each homeomorphic
to I. If we take for J a pair of points, i,j, one in each component of
T,, then the groupoids G1 = n(Tl,]), G2 = 77(T2,]) are both
simplicial with two vertices (i.e. isomorphic with Al) and
G, = n(TO, J) is the trivial groupoid with two vertices. If we let Xy
be the edge of G, from 1 to j and x , the edge of G, from 1 to j then
G, G, are freely generated by Xy, x, respectively. It follows from
Theorem 17’ that G = n(T, ]) is freely generated by the images
Y1 ¥y of x; and X,. If we now retract to the vertex i by imposing
the relation y, = 1 we see that the fundamental group of Sl is a free
group on one generator, i.e. an infinite cyclic group.

The cylinder S x I is homotopy equivalent to S!, so also has
infinite cyclic fundamental group. This space can be used to
compute the fundamental groups of the torus S! x S! and the Klein
bottle K, each of which can be covered by the interiors of two
subspaces T, T2 homeomorphic with S! x I so that the intersection
T,= rn T, has two components each homeomorphic with st x1.

We take for J a pair of points 1,j, one in each component of T;. The
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groupoid G, = n(Ty, ]) is then a free groupoid on two generators
which we may take as edges x,, y; : i—j. The two elements

a; =x; y'l1 and b, = y'l1 x, are then free generators of the two
vertex groups at i and j, respectively, and they can be represented
by loops round 7; in the same direction since they are conjugate
(b, = y'llalyl). Similarly G, = (T, J) is freely generated by

Xy ¥, : 1=, andits vertex groups at i, j are freely generated by
a, =X, y'21 and b, = y:,ll x,, respectively. G0 = 77(T0, J) is the
disjoint union of two infinite cyclic groups at i,j, generated by

ag, by, say.

In the case of the torus S! x S! the end segments of T; and T,
are overlapped so that loops in Ty at i and j which go round T in
the same sense, also go round T, in the same sense. Thus we may
define the map G,— G, by a, —a;, by — b; and the map Gy — G,
by ag—a,, byt b, The pushout G = 77(5l X Sl, J) then has
generators Xy, vy, X5, y, with defining relations a, = a, and b; = b,
ie. x; yil = X, yél and y'l1 Xy = y'21 x,. If we retract to the vertex i
by means of the tree consisting of y,, say, we obtain a presentation
of the fundamental group of S! x st in the form
gp {xl, Y Xo5 Xq y'l1 = Xy, y'l1 Xy = Xz} (just put Vo = 1 in the given
presentation of G). This is equivalent to gp {xl, Y15 X1¥ =V xl},

which is the direct product of two infinite cyclic groups. This

conclusion could also be reached by Exercise 4 of 4, p.59. The actual

generators of the vertex group at 7 are the images of x,, y; under the
retraction, namely ¢ = x, y;l and 7 =y, yal.

In the case of the Klein bottle K, the ends of T, and T2
overlap in opposite senses, so we may define Gy — G, by
ag—ay, byrby and Gy —G, by aga,, b, »—»bél. The pushout
7(K,]) now has generators X1, ¥y Xy ¥, With defining relations

xly'l1 = x, yél and y'l1 Xy = (yz1 xz)'l. Retracting to i by putting
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¥, = 1 we get a presentation of the fundamental group of K in the

form gp{x., ¥4, x,; X d_ox ,y'lx = x! , which is equivalent to
Py¥v Yo X0 X1 » Y1 X1 =% q

gp{xl, yii x% = y%} Again the corresponding generators of the

fundamental group at 7 are & = x, y'21, n=y, y’zl.

Exercises

1. In any Category K, let a : A -T(4), B : B-I'(B) be morphisms
of D-diagrams, where I'(4) denotes the constant diagram at the
object 4 of X. Suppose that 6 is a morphism from a to 3 (i.e. a pair
of morphisms 6, : A B and 02 : I'(A) - T'(B) such that 0,8 = a62)
and that 6 has a left inverse ¢ (a morphism ¢ : 8—a such that ¢ 6
is the identity mo'rphism on 3). Prove that if a is a right limit for A
then B is a right limit for B. Use this result to complete the proof

of Theorem 17 ' instead of using Proposition 27.

2. Prove that the n-sphere S” has trivial fundamental group for

n>2.

3. Prove that the fundamental group of S? with k points removed

is a free group on k-1 generators.

4. Find the fundamental group of the complement T in real 3-space

R3 of the knotted curve C below.

0%

(Hint. Take two neighbouring parallel planes H,, H, perpendicular
to the plane of the page each cutting C in four points. Let v, U,
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be open half-spaces bounded by H,, H, with U; N U, the region
between H; and H,. Take T, =U, N T, a half-space with two arcs

removed.)

5. Let X be a graph with vertex set V, edge set E and incidences
8, 8, E—V. Let(0,1), [0,1] denote open and closed real unit
intervals. Let |X| = (E x (0,1)) U V (disjoint union), and topologise
X as follows. Give E the discrete topology, E x [0,1] the product
topology, and | X| the identification topology induced by the obvious
map E x [0,1] - |X| ((x,0)— XBO eV, (x 1)—»);{31 eV, (x,A)—-(x,\)
for 0<A<1). Prove that #n(|X|, V) = 7(X) (natural equivalence of

functors).



Bibliographical Notes

All the category theory contained in these pages is to be found
in the textbooks of Freyd [13], Mitchell [22] and Bucur and Deleanu
[8]. The reader who wants to pursue the subject further should
consult these and the excellent survey by MacLane [20].

It is interesting to note that groupoids appeared in the literature
nearly twenty years before categories. They were introduced by
Brandt [3], who discovered them in his study of composition of
quadratic forms and used them again in [4] to describe multiplication
of ideals in orders over Dedekind domains. At about the same time
Loewy [19] introduced similar ‘‘compound groups’’ to describe
isomorphisms between conjugate field extensions. His ideas were
developed by Baer in [2]. Apart from a small number of passing
references, the two concepts seem to have been quickly forgotten,
probably because of a general distaste for partial operations. It was
not until categories were generally accepted (some ten years after
their introduction by Eilenberg and MacLane [11] in 1945) that
interest in groupoids revived. Their systematic study was initiated
by Ehresmann in a long series of papers on local structures
summarised in [12]. They have also been used by Dedecker to
describe cohomology with non-Abelian coefficients (see [10] and
the references given there) and by Michler [21], who continued, in
the language of groupoids, the work of Loewy and Baer on Galois

theory.
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The applications to group theory described in Chs. 14, 15 above
are due to M. Hasse [15] and the author [16, 17]. The methods are
derived on the one hand from the graph-theoretical methods initiated
by Cayley (see Burnside [9], Ch. XIX) and generalised by
Reidemeister [23], and on the other hand from the related method of
covering spaces. More recently, Serre [24] has given a similar
treatment of the Kurosh theorem using the notion of a group acting
on a graph. For a topological proof of Grushko’s theorem, see
Stallings [25].

The simplicial approach to the homology of groups, described
in Ch.16, was suggested by C. Rourke (unpublished), and is closely
related to the work of André[1]) and others. The application of
groupoids to homotopy theory has been nicely exploited by R. Brown
in his book [6], and it is his version of the van Kampen theorem
which we have described in Ch.17. In [5], Brown proves a stronger
‘‘adjunction theorem’’ and also treats the interesting case of an
infinite union of spaces.

Suggested further reading: André [1], Brown [5, 6, 7], Gabriel
and Zisman [14], Serre [24].
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Cocovering map, 97
Coequaliser, 52
Cohomology groups, 143
Colimit, 50
Commutative diagram, 11, 21, 30
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Components of a graph, 27
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Conjugate subgroups, 108
Connected, 27
Connected covering, 102
Constant diagram, 50
Contravariant functor, 14
Coproduct, 51
Costar, 97
Covariant functor, 15
Covering map, 97
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n-fold, 103

trivial, 103
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Deformation, 46
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commutative, 11, 21, 30
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Difference cokernel, 52
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Edge map, 6
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Kurosh’s theorem, 118
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adjoint, 15
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root, 50
Length of path, 24
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Natural transformation, 11
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Nielsen-Schreier theorem, 117
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Regular representation, 111
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Schreier subgroup theorem, 117
Simple reduction of path, 32
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Simplicial groupoid, 8
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Star-injective, etc., 97
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groupoid, 17, 56
representation, 103

U,, 64

Unicursal, 9
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groupoid-map, 62
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map, 6

semigroup, 5
Vertex-surjective, etc., 88

Word, 23, 70
reduced, 34
Word problem, 33

REPRINTS IN THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles
from the body of important literature in Category Theory and closely related subjects which
have never been published in journal form, or which have been published in journals whose narrow
circulation makes access very difficult. Publication in ‘Reprints in Theory and Applications of
Categories’ will permit free and full dissemination of such documents over the Internet. Articles
appearing have been critically reviewed by the Editorial Board of Theory and Applications of
Categories. Only articles of lasting significance are considered for publication. Distribution is via
the Internet tools WWW/ftp.

SUBSCRIPTION INFORMATION. Individual subscribers receive (by e-mail) abstracts of ar-
ticles as they are published. To subscribe, send e-mail to tac@mta.ca including a full name and
postal address. For institutional subscription, send enquiries to the Managing Editor, Robert
Rosebrugh, rrosebrugh@mta.ca.

SELECTION OF REPRINTS. After obtaining written permission from any copyright holder,
any three TAC Editors may propose a work for TAC Reprints to the Managing Editor. The
proposal will be reported to all Editors. The Managing Editor may either accept the proposal or
require that the Editors vote on it. Before such a vote, the author, title and original publication
data will be circulated to Editors. If a 2/3 majority of those TAC Editors responding within one
month agrees, the work will be accepted for TAC Reprints. After a work is accepted, the author
or proposer must provide to TAC either a usable TeX source or a PDF document acceptable to the
Managing Editor that reproduces a typeset version. Up to five pages of corrections, commentary
and forward pointers may be appended by the author. When submitting commentary, authors
should read and follow the Format for submission of Theory and Applications of Categories at
http://www.tac.mta.ca/tac/.

EDITORIAL BOARD.

Michael Barr, McGill University: barr@barrs.org, Associate Managing Editor
Lawrence Breen, Université Paris 13: breen@math.univ-parisi3.fr

Ronald Brown, University of Wales Bangor: r.brown@bangor.ac.uk

Jean-Luc Brylinski, Pennsylvania State University: jlb@math.psu.edu

Aurelio Carboni, Universita dell Insubria: aurelio.carboni@uninsubria.it
Valeria de Paiva, Palo Alto Research Center: paiva@parc.xerox.com

Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk

P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk

G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au

Anders Kock, University of Aarhus: kock@imf.au.dk

Stephen Lack, University of Western Sydney: s.lack@uws.edu.au

F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Jean-Louis Loday, Université de Strasbourg: loday@math.u-strasbg.fr

Ieke Moerdijk, University of Utrecht: moerdijk@math.uu.nl

Susan Niefield, Union College: niefiels@union.edu

Robert Paré, Dalhousie University: pare@mathstat.dal.ca

Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca, Managing Editor
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz

James Stasheff, University of North Carolina: jds@math.unc.edu

Ross Street, Macquarie University: street@math.mq.edu.au

Walter Tholen, York University: tholen@mathstat.yorku.ca

Myles Tierney, Rutgers University: tierney@math.rutgers.edu

Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca

This reprint may be accessed from http://www.tac.mta.ca/tac/reprints
or by anonymous ftp at ftp://ftp.tac.mta.ca/pub/tac/html/tac/reprints/articles/7/tr7.pdf



