We lift the standard equivalence between fibrations and indexed categories to an equivalence between monoidal fibrations and monoidal indexed categories, namely lax monoidal pseudofunctors to the 2-category of categories. Furthermore, we investigate the relation between this `global' monoidal version where the total category is monoidal and the fibration strictly preserves the structure, and a `fibrewise' one where the fibres are monoidal and the reindexing functors strongly preserve the structure, first hinted by Shulman. In particular, when the domain is cocartesian monoidal, we show how lax monoidal structures on a pseudofunctor to Cat bijectively correspond to lifts of the pseudofunctor to MonCat. Finally, we give some examples where this correspondence appears, spanning from the fundamental and family fibrations to network models and systems.
Keywords: Fibrations, indexed categories, Grothendieck construction, monoidal 2-categories, monoidal pseudofunctors
2020 MSC: 18D30,18M05
Theory and Applications of Categories, Vol. 35, 2020, No. 31, pp 1159-1207.
http://www.tac.mta.ca/tac/volumes/35/31/35-31.pdf
Revised 2020-10-27. Original version:
http://www.tac.mta.ca/tac/volumes/35/31/35-31a.pdf